News Release

Wednesday, January 7, 2009

Gene Abnormality Found To Predict Childhood Leukemia Relapse

Scientists have identified mutations in a gene that predict a high likelihood of relapse in children with acute lymphoblastic leukemia (ALL). Although the researchers caution that further research is needed to determine how changes in the gene, called IKZF1 or IKAROS, lead to leukemia relapse, the findings are likely to provide the basis for future diagnostic tests to assess the risk of treatment failure. By using a molecular test to identify this genetic marker in ALL patients, physicians should be better able to assign patients to appropriate therapies.

The findings of the Children’s Oncology Group (COG) study, led by scientists from St. Jude Children’s Research Hospital, Memphis, Tenn., the University of New Mexico Cancer Research and Treatment Center, Albuquerque, N.M., and the National Cancer Institute (NCI), part of the National Institutes of Health, appear online Jan. 7, 2009, in the New England Journal of Medicine, and in print on Jan. 29, 2009.

ALL, a cancer of white blood cells, is the most common childhood cancer, in that it is diagnosed in about one in 29,000 children annually. Using currently available therapies, cure rates for ALL are now upwards of 80 percent. However, those therapies carry with them substantial side effects, and even with treatment, only 30 percent of children who experience a relapse of ALL will survive five years. Determining the risk of relapse faced by an individual patient would help physicians tailor treatment intensity appropriately, but until now there has been no good marker for predicting outcome.

"Great progress has been made in recent years in improving the cure rate of childhood ALL," said Stephen Hunger, M.D., chairman of the COG ALL committee and the lead COG investigator on this study. "The findings of this study help us further subdivide those patients who are unlikely to be cured, and identify patients in whom different therapies should be tested."

In the study, researchers analyzed genetic data on leukemia cells obtained at diagnosis from 221 children with high-risk leukemia (i.e., a high chance of relapse) who had been treated in an existing COG study. They conducted their analysis using microarrays and DNA sequencing – technologies which allow researchers to quickly and efficiently identify and analyze multiple genes simultaneously in the same cell. Using these technologies to identify genetic abnormalities in leukemia cells, the investigators examined the DNA of the leukemia cells at the time of diagnosis and then determined if any of the identified genetic changes predicted relapse. To confirm that specific genetic changes were associated with relapse, the scientists also examined a second group of 258 children with ALL who were treated at St. Jude.

"We looked across the genome in an unbiased fashion in an attempt to pull out any genes that were significantly associated with outcome," said Charles Mullighan, M.D., Ph.D., assistant member in the St. Jude Department of Pathology and the paper’s first author. "From these findings, we identified a group of genetic abnormalities that together predicted poor outcome."

The most significant association was with the deletions or changes in the IKAROS gene. Mutations of IKAROS were shown to identify a subgroup of patients who were treated in the COG study that had a very poor prognosis. The prognostic significance of these genetic alterations was validated in the independent St. Jude patient group, a finding of particular importance since different types of therapies were used in these two groups of patients.

Previous research has shown that the IKAROS gene serves as the blueprint for production of the IKAROS protein, which regulates the activity of many other genes. The IKAROS protein plays an essential role in the development of lymphocytes, the white blood cells that, when changed, give rise to pediatric ALL. The way in which IKAROS abnormalities contribute to the development of relapse remains to be determined.

The study also examined gene expression in the leukemia cells using microarray chips, and found that leukemia cells from patients with IKAROS alterations expressed primitive, stem cell-like genes, suggesting that the cells are less mature and possibly more resistant to the effects of drugs used to treat ALL. "These findings show how detailed analysis of leukemic cells using complementary techniques can enhance our understanding of the genetic basis of leukemia," said co-author Cheryl Willman, M.D., director and CEO, University of New Mexico Cancer Research and Treatment Center.

The researchers also tested whether the presence of IKAROS alterations was associated with levels of minimal residual disease, another measure of treatment response in ALL.

"Measurement of levels of minimal residual disease is widely used to monitor treatment responsiveness and also to alter patients’ therapy if they have a very poor response to treatment," said James Downing, M.D., St. Jude scientific director and the paper’s senior author. "An important analysis we conducted was to see whether identifying the association of IKAROS alterations with poor outcome added anything to just measuring levels of minimal residual disease. And, indeed, it did."

The researchers’ analysis indicated that identifying IKAROS alterations may be clinically useful and will complement existing diagnostic tests and measurement of minimal residual disease levels.

While a clinical test for alterations of IKAROS could prove valuable for predicting poor outcomes in children with ALL, complexities remain. There are different types of deletions in the gene, some that involve the entire IKAROS gene and others that involve only parts of the gene. Because the genetic alterations in IKAROS in ALL are not uniform or limited to a single mutation or deletion, it may be necessary to develop a panel of different tests to detect IKAROS lesions and identify which patients are at highest risk for relapse.

This research was done as part of the NCI Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiative, which seeks to utilize the study of genomics to identify therapeutic targets in order to develop more effective treatments for childhood cancers. The first two cancers being studied in the program are ALL and neuroblastoma, a cancer that arises in immature nerve cells and affects mostly infants and children. Combined, these two cancers account for 3,000 new cases each year, and in both cancers, there are some children who have a very favorable prognosis and others who are at high risk for treatment failure. By determining the genetic factors that distinguish these groups, the hope is that researchers can use this information to improve patient outcomes and develop better treatments, particularly for those in the high-risk group.

"In the long term, our goal is to develop effective therapeutic interventions, directed toward vulnerabilities that leukemia cells acquire as a result of the genomic abnormalities identified through the TARGET initiative," said Malcolm Smith, M.D., Ph.D., of NCI’s Cancer Therapy Evaluation Program. These are the first results to come out of this initiative. For more information about TARGET, please visithttp://target.cancer.gov

St. Jude Children's Research Hospital
St. Jude Children's Research Hospital is internationally recognized for its pioneering work in finding cures and saving children with cancer and other catastrophic diseases. Founded by late entertainer Danny Thomas and based in Memphis, Tenn., St. Jude freely shares its discoveries with scientific and medical communities around the world. No family ever pays for treatments not covered by insurance, and families without insurance are never asked to pay. For more information, please visit www.stjude.org.

The Children’s Oncology Group/CureSearch
Children’s Oncology Group (COG), the world’s largest cooperative pediatric cancer research organization, which includes every recognized pediatric cancer program in North America, comprises a network of more than 5,000 physician, nurse, and other clinical and laboratory investigators whose collaboration in clinical and translational research has turned childhood cancer from a virtually incurable disease to one with an overall cure rate approaching 80 percent. COG is committed to conquering childhood cancer through scientific discovery and compassionate care. For more information, please visit www.childrensoncologygroup.org

The University of New Mexico Cancer Research and Treatment Center
The UNM Cancer Center is New Mexico’s only National Cancer Institute-designated cancer center, and is home to the state’s largest and most experienced team of cancer experts with 81 board-certified oncology physicians and more than 120 research scientists, supported by more than $50 million in grants annually. As the Official Cancer Center of the State of New Mexico, the Center served 7,600 new patients last year in 84,000 patient visits, treating nearly half of all adults with cancer in the state and virtually all the children.

The National Cancer Institute 

NCI leads the National Cancer Program and the NIH effort to dramatically reduce the burden of cancer and improve the lives of cancer patients and their families, through research into prevention and cancer biology, the development of new interventions, and the training and mentoring of new researchers. For more information about cancer, please visit the NCI Web site at http://www.cancer.gov or call NCI's Cancer Information Service at 1-800-4-CANCER (1-800-422-6237). 

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

NIH…Turning Discovery Into Health®

Reference

Mullighan CG, Su X, Zhang J, Radtke I, Phillips LAA, Miller CB, Ma J, Liu W, Cheng C, Schulman BA, Harvey RC, Chen I, Clifford RJ, Carroll WL, Reaman G, Bowman WP, Devidas M, Gerhard DS, Yang W, Relling MV, Shurtleff SA, Campana D, Borowitz MJ, Pui C, Smith M, Hunger SP, Willman CL, Downing JR, and the Children's Oncology Group. Deletion of IKZF1 and Prognosis in Acute Lymphoblastic Leukemia. NEJM. Vol. 360, No. 5.

###