RADx Underserved Populations (RADx-UP) Return to School August Workshop

August 9, 2021

Agenda

Торіс	Speaker	Time
Welcome & Introductions	Dr. Alison Cernich	1:30pm
Overview of RADx-UP Initiative	Dr. Eliseo J. Pérez-Stable	1:35 pm
Overview of the Return to School Initiative	Dr. Alison Cernich	1:40 pm
Phase II Overview of Projects	Dr. Sonia Lee	1:45 pm
COVID-19 and Children	Dr. Shamez Ladhani	1:50 pm
HHS Partner Programs	Angelica O'Conner (CDC) Dr. Matthew Humbard (HHS) Dr. Joseph Miller (HHS)	2:15 pm
RADx-UP Coordination and Data Collection Center (CDCC)	Dr. Michael Cohen-Wolkowiez	2:45
Break	All	3:00
Team Presentations	Dr. Chris Lindsey	3:15 (15 minutes per team)
Closing Remarks	Dr. Alison Cernich	5:15

RADx-UP Program

Eliseo J. Pérez-Stable, M.D.

Director, National Institute on Minority Health and Health Disparities (NIMHD)

Rapid Acceleration of Diagnostics (RADx) Initiative

RADx Tech - \$908M*

Highly competitive, rapid three-phase challenge to identify the best candidates for at-home or point-of-care tests for COVID-19

RADx Underserved Populations (RADx-UP) – \$533M

Interlinked community-engaged research projects focused on implementation strategies to enable and enhance testing of COVID-19 in vulnerable populations

RADx Radical (RADx-rad) – \$187M

Develop and advance novel, non-traditional approaches or new applications of existing approaches for testing

RADx Advanced Testing Program (RADx-ATP) – \$192M

Rapid scale-up of advanced technologies to increase rapidity and enhance and validate throughput — create ultra-high throughput laboratories and "mega labs"

Data Management Support – \$70M

Build an infrastructure for and support coordination of the various data management needs of many of the COVID-19 efforts

At-Home Diagnostic Testing- \$20M

Evaluate the effectiveness of existing diagnostic technologies and platforms in at-home environments

RADx-Underserved Populations (RADx-UP)

Overarching Goals

- Enhance COVID-19 testing among underserved and vulnerable populations across the US
- Develop/create a consortium of community-engaged research projects designed to rapidly implement testing interventions
- Strengthen the available data on disparities in infection rates, disease progression and outcomes, and identify strategies to reduce these disparities in COVID-19 diagnostics

RADx-UP Strategies

- **Expand capacity to test broadly** for SARS-CoV-2 in highly affected populations, including asymptomatic persons only with tests with FDA Emergency Use Authorization. These may include self-test and saliva-based methods.
- **Deploy surveys with Common data Elements** that will be applied across all RADx projects plus additional survey items that are defined for RADx-UP consortium.
- Inform implementation of mitigation strategies based on isolation, testing and contact tracing to complement mask wearing and physical distancing to limit community transmission and maximize implementation of vaccines.
- **Understand factors** that contribute to COVID-19 disparities and **implement interventions** to reduce these disparities.
- Establish research and data infrastructure that could facilitate data sharing and current and future research questions

RADx-UP Phase I Snapshot: 69 Funded Research Projects and Coordination and Data Collection Center

NOT-OD-20-121, NOT-OD-20-120, NOT-OD-20-119

Funded sites and research projects span a total of **31 states** in addition to DC and Puerto Rico and include **55 institutions**.

Projects include diverse health disparity population affected by COVID-19.

Populations with Health Disparities

urning Discoverv into Health

RADx-UP Return to School Diagnostic Testing Initiative

Alison Cernich Ph.D.

Deputy Director, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)

RADx-UP Return to School Diagnostic Testing Approaches

Goal

Develop and test COVID-19 diagnostic testing approaches to safely return children and staff to the in-person school setting in underserved and vulnerable communities.

Mechanism

Other Transaction Authority to provide flexibility for changing circumstances and funding of non-traditional partners

Approach

- Focus on children and adolescents below the age eligible for vaccination via Emergency Use Authorization (age 12+) and all school personnel
- Advance methods to integrate testing in return to or maintenance of in-person instruction
- Identify effective, scalable, and sustainable testing implementation strategies

Budget

\$50 million commitment from the OD congressional appropriation

Return to School Phase I OTA-21-004

Program Information: ~\$33M awarded in Phase I; 8 sites

- Focus on children and adolescents below the age eligible for vaccination via Emergency Use Authorization (age 16) and all school personnel
- Advance methods to integrate testing in return to or maintenance of inperson instruction
- Identify effective, scalable, and sustainable testing implementation strategies, including in-school testing, in community pediatric primary care clinics, childcare centers, preschool, and school settings serving primarily underserved or disadvantaged children and their families.

Overview

- Awarded 8 projects in April FY21
- Strategies for school-based settings to combine frequent testing with proven safety measures to reduce the spread of COVID-19

Return to School Phase II OTA-21-007

Program Information: ~\$23M awarded in Phase II; 8 sites

- Focus on children and adolescents below the age eligible for vaccination via Emergency Use Authorization (age 12) and all school personnel
- Advance methods to integrate testing in return to or maintenance of inperson instruction
- Identify effective, scalable, and sustainable testing implementation strategies, including in-school testing, in community pediatric primary care clinics, childcare centers, preschool, and school settings serving primarily underserved or disadvantaged children and their families.

Overview

- Awarded 8 projects in June and July 2021
- Strategies for school-based settings to combine frequent testing with proven safety measures to reduce the spread of COVID-19

Overview of Phase II Projects

Sonia Lee Ph.D.

Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)

Applications Awarded during Phase II

PI	INSTITUTION	Project Title	GEOGRAPHIC LOCATION
Inkelas	University of California, Los Angeles	Impact of COVID-19 testing and mitigation on equitable return-to- school in the second largest US school district	Los Angeles, California
Lee	Arizona State University- Tempe Campus	Back to ECE Safely with SAGE: Reducing COVID-19 Transmission in Hispanic and Low-income Preschoolers	Phoenix, Arizona
Okihiro	University of Hawaii at Manoa	Empowering schools as community assets to mitigate the adverse impacts of COVID-19	Hawaiian Islands
Gwynn	University of Miami School of Medicine	Maximizing Child Health and Learning Potential: How to Promote A School Culture of Safety in the era of COVID-19	Miami, Florida
McCulloh	University of Nebraska Medical Center	Mobile Health-Targeted SARS-CoV-2 Testing and Community Interventions to Maximize Migrant Children's School Attendance During the COVID-19 Pandemic	Buffalo, Hall and Adams Counties, Nebraska
Kiene	San Diego State University	Communities Fighting COVID!: Returning Our Kids Back to School Safely	South San Diego County, California
Wu	University of Utah	SCALE-UP Counts: A health information technology approach to increasing COVID-19 testing in elementary and middle schools serving disadvantaged communities	Granite School District, Utah
Johnson	Johns Hopkins University, University of Maryland, Morgan State University	Social, ethical, and behavioral factors in the return to school among underserved communities in Maryland	Baltimore, Maryland

Geographic Distribution of Awarded Projects

Pre-decisional – Not for distribution

Health Disparity and Vulnerable Populations

Populations with Health Disparities

Phase I Awards Phase II Awards Children and adolescents (6-17) 3 6 Preschool Aged Children (3-5yrs) 1 Migrant Youth 1 Homeless Youth 1 Adolescents (13-17yrs) 1 1 Children with Medical Complexities 1 Children (6-12yrs) 1 Children with IDD 2 Number of Projects

Vulnerable Populations

Note: There are projects working with multiple populations; the number of projects is not additive

Educational Settings

Note: There are projects working with multiple populations; the number of projects is not additive

Protecting and improving the nation's health

COVID-19 & Children What have we learnt so far?

Dr Shamez Ladhani

Paediatric Infectious Diseases Consultant Email: shamez.Ladhani@phe.gov.uk

Twitter: @shamezladhani

Impact of School Closures on children

- Educational development
- Emotional development
- Social development
- Physical activity
- School meals
- Child protection & social services
- School vaccinations

New York Control of Co

Protecting and improving the nation's health

Risk of SARS-CoV-2 Infection Children vs Adults

Children as likely to be infected as adults

Fig 7. United States: Number of COVID-19 Cases Added in Past Week for Children and Adults*

* Note: 4 states changed their definition of child cases: AL as of \$15/20, Hi as of \$27/20, Ri as of \$10/20, MO as of 10/1/20; TX reported age for only a small proportion of total cases each week (eg. 3-20%)

See detail in Appendix: Data from 4k states, MYC, DC, PR and GU

CALL CONDENT American Academy of Pediatrics

S American Academy of Pediatrics - Analysis by American Academy of Pediatrics and Children's Hospital Association

Antibody Seroprevalence in a New York City Hospital

1-10 11-18 19-24 25-30 31-40 41-50 51-60 61-70 71-80 >80 Age, y

1-10 11-18 19-24 25-30 31-40 41-50 51-60 61-70 71-80 >80

Age, y

Figure 1. Severe Acute Respiratory Syndrome Coronavirus 2 Antibody Test Frequencies and Positivity Rates from April 9 to August 31, 2020

Yang et al. JAMA Network Open. 2021;4(3):e214302. doi:10.1001/jamanetworkopen.2021.4302

Antibody Seroprevalence in a New York City Hospital

 Antibody levels in children decline with age and then increase in adults

Antibody Rates

Yang et al. JAMA Network Open. 2021;4(3):e214302. doi:10.1001/jamanetworkopen.2021.4302

192 Primary Schools Contacted

138 Primary Schools recruited

- Weekly Swabs: 89
- Bloods & Swabs: 49

Participants recruited:

>12,000 staff & students

Infection rates in primary and secondary schools

- Early studies showed lower infection rates in children vs adults:
 - Children less likely to be exposed than adults
 - Symptoms-based testing
 - PCR-testing
- More recent antibody studies show similar seropositivity in adults and children

Secondary Schools

Higher Antibody titres in Children than Adults

Children retain higher antibodies than adults >6 months after SARS-CoV2 infection:

10 100 10-1 N-capsid Spike в 105 10 Anti-N MSD (AU/ml) (AU/ml) 105 10 104 104 MSD 103 10 102 z, 102 101 101

10

1.4

A

10

(Im/UR) dSM 10²

Fold Change - Children:Adults

1.1

1.7

2.3

............

- Spike
- Nucleocapsid
- RBD
- N-terminal domain

Antibodies against other coronaviruses

- Antibody positive children develop strong immune responses against <u>beta-</u> <u>coronaviruses</u> than adults
- No such effect seen with influenza virus controls

Cellular responses in seropositive children

- Elispot responses to Spike were 86% (32/37) of seropositive children vs 69% (45/64) of seropositive adults
- Magnitude of cellular response against spike was 2.1-fold higher in children (p=0.0003)

Cellular Responses in Seronegative Kids

- Robust cellular responses in 60% (12/20) seronegative children (3 different assays)
- Cellular responses variable but lower magnitude in 34% (10/29) of sero-negative adults
- Cellular responses in seronegative donors markedly spike-specific: ? pre-existing cross-reactive immunity
- 7/12 seronegative children & 6/10 seronegative adults with positive ELISpot also had increased HCoV antibodies: ? recent HCoV infection
- Alternatively, responses might represent cellular sensitisation without sero-conversion

Antibody persistence in Seropositive Kids

 After 6 months, children have better antibody persistence than adults, possibly because they start with higher antibodies

Protecting and improving the nation's health

Infection Trends in School-aged Children

Trends in school-aged children

Weekly SARS-CoV-2 infection rates in children: Correlation with Community Rates (England)

Low Community Transmission Week

High Community Transmission Week

Protecting and improving the nation's health

Schools Reopening during national lockdown (March 2021)

Schools Reopening (March 08-31, 2021)

Figure 5: Weekly confirmed COVID-19 case rates per 100,000, tested under Pillar 1 and Pillar 2, by age group

Schools Reopening: Hospitalisations by age

Figure 39: Weekly hospital admission rate by age group for new (a) COVID-19 positive cases and (b) influenza reported through SARI Watch

Schools Reopening: ICU admissions by age

Figure 44: Weekly ICU/HDU admission rate by age group for new (a) COVID-19 positive cases and (b) influenza reported through SARI Watch

Schools Reopening 2: 19 April 19 – 08 May, 2021

100

Weekly incidence of laboratory confirmed COVID-19 cases per 100,000 Public Health population in nursery/preschool, primary school, secondary school and England college/university age cohorts

Vaccinating adults protects children, Israeli study

Infection rates in children who continued to attend school with daily LFD testing were similar compared to those who were sent home to self-isolate

•

medRχiv	BMJ Yale	HOME NEWS
		Search
	O Comment on t	this paper
A cluster randomised	l trial of	1.1.1.1
the impact of a policy	of daily testing for	
contacts of COVID-19	cases on attendance	e and
COVID-19 transmissi	on in English seconda	ary
schools and colleges		
Bernadette C Young, David W Sylvester Smith, George Beve Fegor Ichofu, Joseph Hillier, Ia Fiona Dawe, Ieuan Day, Lisa D James McCrae, Ffion Jones, Jo Sarah Tunkel, Richard Ovens, I	' Eyre, Saroj Kendrick, Chris ' ridge, Toby Nonnemacher, n Diamond, Emma Rourke, Davies, Paul Staite, Andrea Lac seph Kelly, Urszula Bankiewic David Chapman, Peter Marks	White, ey, cz,
NICK HICKS, IOM FOWIER, Susar	n Hopkins, Lucy Yardley, Tim	EA Peto

- Infection rates in children who continued to attend school with daily LFD testing were similar compared to those who were sent home to self-isolate (<2%)
- Not powered to detect improvement in school attendance rates → but logical?

Secondary attack rates in primary and secondary school bubbles

📜 Download This Paper Open PDF in Browser COLOR. Secondary Attack Rates in Primary and NTSDER. Secondary School Bubbles Following a Confirmed Case: Active, Prospective STATE National Surveillance, November to December 2020, England NUEWA 24 Pages Posted: Annabel Powell Public Health England - Immunisation and Countermeasures Division

Secondary attack rate in students:

- * 10.0% (6/60) primary
- * 3.9% (4/102) secondary

Secondary attack rate in staff: * 6.3% (1/16) primary * 0% (0/1) secondary

Household contacts of students:

* 6.6% (12/183) primary * 3.5% (11/317) secondary

Household contacts of staff: * 3.7% (1/27) primary * 0% (0/1) secondary

Conclusions

- School closures have a wider impact on children than loss of education
- Children as likely as adults to be infected with SARS-CoV-2
- Children develop robust and persistent immunity against the virus
- Risk of infection in school is low for staff and students, and no higher than risk in the local community
- Risk of infection and outbreaks in schools correlates strongly with local community infection rates
- Active case finding: very low rates of in-school transmission in staff or students
- Vaccinating teachers and adults family member will allow children to safely attend school safely, without
- Early evidence from Israel: vaccinating adults protects children
- ? Is there a need to vaccinate children against SARS-CoV-2

Acknowledgements

SKIDs Investigators: Frances Baawuah, Joanne Beckmann, Ifeanichukwu Okike, Shazaad Ahmad, Joanna Garstang, Andrew J Brent, Bernadette Brent

sKIDs Team: Felicity Aiano, Zahin Amin-Chowdhury, Louise Letley, Oliver Martin, Jessica Flood, Emily-Jane Picton, Samuel Jones, Anna Mensah, Paul Charter, Corinne Whillock, Deborah Cohen, Kim Taylor, Johanna Bosowski, Yves-Pearl Hurley, Cherstyn Hurley, Francine Stalham, Hiran Hirani, Alpa Shah

PHE Statisticians: Jemma Walker, Nick Andrews

PHE Immunisation and Countermeasures Division: Vanessa Saliba, Gayatri Amirthalingam, Jamie Lopez Bernal, Michael Lattimore, Kevin Brown, Mary Ramsay

PHE Virus Reference Department: Maria Zambon, John Poh, Shabnam Jamarani, Andrew Mumford, Neil Woodford, Steve Harbour

PHE Manchester: Ray Borrow, Ezra Linley

Birmingham: Paul Moss, Alexander Dowell

Girl with COVID-19 warrior sign

Protecting and improving the nation's health

SKDS COVID-19 Surveillance in Primary School Kids

Girl getting a COVID serology test

Protecting and improving the nation's health

Secondary School Students

Protecting and improving the nation's health

COVID-19 outbreaks in Educational Settings after full reopening of schools (September – October 2020)

Outbreaks in Educational Settings

Date of report week

Outbreaks in Educational Settings

- Full reopening of all preschool, primary school and secondary school years in September 2020
- Outbreak investigation during first half-term (31 August 18 October 2020)
- 969 primary (n=450) & secondary school outbreaks (n=519) reported to PHE → 3% of primary schools and 15% of secondary schools in England.
- 369 schools contacted in November 2020 → 190 geographicallyrepresentative schools completed questionnaire; 2,425 cases reported.

Size of outbreaks

	School Type			
	Primary n (% of cases in the setting)	Secondary n (% of cases in the setting)	Combined (% of cases in the setting)	All settings n (%)
Student cases	328 (41%)	1105 (73%)	66 (59%)	1499 (62%)
Staff cases	471 (59%)	410 (27%)	45 (41%)	926 (38%)
Total cases	799 (33%)	1515 (62%)	111 (5%)	2425 (100%)
Number of outbreaks	100	79	11	190
Median, days (IQR)	6 (4-10)	15 (8.5-27)	6 (4.5-15.5)	9 (5-16)
Interquartile range	6	18.5	11	11
Mode number of cases 🖊	3	6	5	6
Range per outbreak	2-35	2-100	2-26	2-100

Attack Rates in Students and staff

	School Type			
	Primary (100 schools)	Secondary (79 schools)	Combined (11 schools)	All schools (190 schools)
Total student cases	328	1105	66	1499
Total students	39,027	91,919	8,551	139,497
Student attack rate % (0E% CI)	0.84%	1.20	0.77%	1.08%
Scudenc attack rate, 76 (95% CI)	(0.75-0.94%)	(1.13-1.28%)	(0.60-0.99%)	(1.02-1.13%)
Total staff cases	471	410	45	926
Total staff	5852	11510	1721	19083
Staff attack rate 9/ (059/ C1)	8.05%	3.56%	2.62%	4.85%
Stall attack fate, % (95% CI)	(7.37-8.78%)	(3.24-3.92%)	(1.94-3.51%)	(4.55-5.17%)
Teaching staff cases	378	284	31	637
Total teaching staff	3852	7146	1039	12,037
Teaching staff attack rate % (05% CI)	9.81%	3.97%	2.98%	5.76%
reaching stan attack rate, 76 (5576 Ci)	(8.90-10.82%)	(3.54-4.46%)	(2.07-4.26%)	(5.35-6.19%)
· · · · · · · · · · · · · · · · · · ·	\sum			
Non-teaching staff cases	93	126	14	233
Total non-teaching staff, % (95% Cl)	2000	4354	682	7,046
Staff attack rate	4.65% 💙	2.89%	2.05%	3.31%
Stall attack late	(3.79-5.69%)	(2.42-3.44%)	(1.17-3.51%)	(2.91-3.76%)
		\sim		
Total cases	799	1515	111	2425
Total population (staff & students)	44879	103429	10272	158580
Attack rate % (95% CI)	1.78%	1.47%	1.08%	1.53%
	(1.66-1.91%)	(1.39-15.4%)	(0.89-1.31%)	(1.47-1.59%)

Index Case in Outbreaks

	School type			
	Primary	Secondary	Combined	Total
Index case in the outbreak	n (%)	n (%)	n (%)	%
Teaching staff	48 (48%)	25 (32%)	4 (36%)	77 (40.5%)
Student	35 (35%)	47 (59%)	5 (45%)	87 (45.8%)
Non-teaching staff	9 (9%)	6 (8%)	1 (9%)	16 (8%)
Another source	1 (1%)	0 (0%)	0 (0%)	1 (1%)
Not reported	7 (7%)	1 (1%)	1 (9%)	9 (5%)
Groups affected by the outbreak	n (%)	n (%)	n (%)	%
Staff only	6 (6%)	1 (1%)	1 (9%)	8 (4%)
1 year group only	39 (39%)	5 (6%)	2 (18%)	46 (24%)
More than 1 year group	55 (55%)	73 (92%)	8 (73%)	136 (72%)
More than 3 year groups	13 (13%)	54 (68%)	5 (45%)	72 (38%)
Total	100	79	11	190

Staff / Students affected

		School type			
Index Case	Group affected	Primary	Secondary	Combined	All
	Staff only	4/48 (08%)	0/25 (-)	1/4 (25%)	5/77 (06%)
	Student only	0/48 (-%)	0/25 (-)	0/4 (-)	0/77 (-)
Teaching staff	Both 🤇	44/48 (92%)	25/25 (100%)	3/4 (75%)	72/77 (94%)
	Staff only	0/35 (-)	1/47 (2%)	0/5 (-)	1/87 (1%)
	Student only	10/35 (29%)	6/47 (13%)	0/5 (-)	28/87 (32%)
Student	Both 🤇	25/35 (71%)	40/47 (85%)	5/5 (100%)	48/87 (55%)
	Staff only	2/9 (22%)	0/6 (-)	0/1 (-)	2/16 (13%)
Non-teaching	Student only	0/9 (-)	0/6 (-)	0/1 (-)	0/16 (-%)
staff	Both 🤇	7/9 (78%)	6/6 (100%)	1/1 (100%)	14/16 (88%)

Serological studies in Educational Settings

Lachassinne, France (Jun-Jul 2020) 22 daycare centres	 327 children, 197 staff, 164 controls 3.7% (1.3–6.8), children, 6.8% (3.2-11.5) staff, 5.0% adult contols – children most likely exposed to household adult with COVID-19 (43% vs 19; RR 7.1 [2.2-22.4). ol adults
Ladhani England (Jun-Dec 2020) 45 primary schools	 5.6% (19/340; 3·4-8·6) children vs. 4·8% (36/745; 3·4–6·6) staff seroconverted Seropositivity not associated with school attendance during lockdown or staff contact with students in school
Ladhani England (Sep-Dec 2020) 18 secondary schools	 2,209 participants: 1,189 (53.8%) students & 1,020 (46.2%) staff SARS-CoV-2 infection rates similar in staff & students, and national prevalence 8.3% (53/641) staff vs. 6.5% (35/542) students seroconverted (p=0.24).

SARS-CoV-2 Transmission in Schools

Buonsenso, Italy	1,350 (1,059 students, 145 teachers,146 others) had COVID-19 1,212/65,104 (1.8%) schools affected >90% had only 1 case in school, only 1 high school had >10 cases 192 (15.8%) schools closed entirely, esp nursery/kindergartens
Larosa, Italy	SARS-CoV-2 transmission in 41 classes of 36 schools Secondary attack rate was 3.2%, reaching 6.6% in middle/high schools. More timely isolation and testing of classmates reduce transmission
Zimmerman, North Carolina, USA	11 school districts, >90,000 students and staff attending school in-person for 9 weeks 773 community-acquired SARS-CoV-2 infections Only 32 additional infections identified through contact tracing that were acquired in school
Falk Wisconsin USA	17 rural Wisconsin schools, 4,876 students & 654 staff (August 31–November 29, 2020) Incidence (3,453/100,000) lower than in the county overall (5,466 per 100,000). Of 191 cases in students/staff, only 7 (3.7%), all among students, linked to in-school spread
Varma, New York USA	COVID-19 prevalence in public schools similar or less than community rates (Oct-Dec 2020) Of 36,423 school-based close contacts, only 191 (0.5%) subsequently tested positive Likely index case was an adult for 78.0% of secondary cases.
RIVM, Netherlands	Just over half the cases in secondary school clusters were acquired outside school, Mainly during intensive contact with friends or classmates in their free time Most infections restricted to small groups of students without affecting teachers

Protecting and improving the nation's health

SIS School Infection Survey (PHE, ONS, LSHTM)

- 12,204 participants (5,114 staff; 7,089 pupils)

- 121 Primary (41) & Secondary (42) Schools

-7,751 both rounds (3,322 staff; 4,429 pupils)

SARS-CoV-2 antibodies in School Staff

Source: Office for National Statistics: COVID-19 Schools Infection Survey

Covid-19 Infection Survey, working age population same local authorities

- 12.51% (November)
- 18.22% (December)

Protecting and improving the nation's health

Long COVID in Children

COVID effect on the body

Office for National Statistics, UK (March 2021)

Illness duration and symptom profiles

Illness duration and symptom profile in a large cohort of symptomatic UK school-aged children tested for SARS-CoV-2

Erika Molteni PhD^{1,4}, Carole H. Sudre PhD^{1,2,3}*, Liane S. Canas PhD¹, Sunil S. Bhopal PhD⁴, Robert C. Hughes MPH MB ChB⁶, Michela Antonelli PhD¹, Benjamin Murray MSc¹, Kerstin Kläser MSc¹, Eric Kerloot PhD¹, Liyuan Chen MSc¹, Jie Deng PhD¹, Christina Hu BA⁶, Somesh Selvachandran MEng⁶, Kenneth Read BSc⁶, Joan Capdevila Pujol PhD⁶, Alexander Hammers PhD^{1,7}, Tim D. Spector PhD⁸, Sebastien Ourselin PhD¹, Claire J. Steves PhD⁸, Marc Modat PhD¹, Michael Absoud PhD^{6,10}, Emma L. Duncan PhD^{8,10}.

- 1,734 children with confirmed COVID-19
- Median illness duration: 6 days (vs. 3 days in test-negative children)
- Positive association between illness duration and increasing age (p<0.0001)
- 77 (4.4%) had illness ≥28 days (older >younger children; 5.1% vs. 3.1%; p=0.046)
- Commonest symptoms: fatigue (84%), headache (80%) & anosmia (80%);
- At 56 days, 1.8% had persistent symptoms vs. 0.9% of controls

Figure 3. Median duration of each symptom [IQR] in younger (5-11 years) and older (12-17 years) children.

Protecting and improving the nation's health

PIMS-TS / MIS-C in Children

Hyperinflammatory syndrome, UK

PIMS/KD/TSS cases —Laboratory confirmed SARS-CoV-2 cases

Latent Class analysis, PIMS cases

Supporting implementation of screening testing in K-12 schools

Angelica O'Connor, MPH

ELC Program Coordinator

Division of Preparedness and Emerging Infections

National Center for Emerging and Zoonotic Infectious Diseases

cdc.gov/coronavirus

National Center for Emerging and Zoonotic Infectious Diseases (NCEZID)

Division of Preparedness and Emerging Infections Director: Henry Walke, MD, MPH Associate Director for Deputy Director: Satish Pillai, MD, MPH (CAPT, USPHS) Associate Director for Science Deputy Director for Management & Operations: Zach Braden, MBA Laboratory Science Scott Santibañez, MD, Todd Parker, PhD MPHTM (CAPT, USPHS) Senior Scientific Advisor **Program Management** Senior Advisor for **Communication Lead Policy Lead** to the Director Official Strategy & Partnerships Margaret (Peggy) Elizabeth Allen, MSPH Amanda Raziano, MPH Kay Hogue, MBA Traci Simpson Honein, PhD, MPH **Emergency Preparedness and** Arctic Investigations Program Laboratory Preparedness and Scientific Programs and **Response Branch Development Branch Response Branch** Michael Bruce, MD, MPH (CAPT, USPHS) Julie Villanueva, PhD, Alvin Shultz, MSPH, Dale Rose, PhD, MSc, **Branch Chief Branch Chief Branch Chief** Director

National Capacity Building Cooperative Agreement

 Mission: To build the governmental public health system capacity for emerging infectious disease prevention, detection, response, and control.

ELC supports the nation

- State Health Departments = 50
- Largest Local Health Departments = 6
- Territories and affiliates = 8
- Customer-service focus

Federal COVID funding and impact on ELC budget

- Coronavirus Aid Relief and Economic Security Act (CARES Act)
- Paycheck Protection Program and Health Care Enhancement Act
- Coronavirus Preparedness and Response Supplemental Appropriations Act
- Coronavirus Response and Relief
 Supplemental Appropriations Act
- American Rescue Plan Act

\$42 Billion

ELC Reopening Schools award

- \$10 billion to 64 ELC recipients from American Rescue Act Plan of 2021
- Comprehensive screening testing for K-12 schools (public, charter, and private)
 - 2020-2021 School year
 <u>Spring</u>: immediate implementation of pilot school screening testing where possible
 <u>Summer</u>: summer school, camps and planning for Fall
 - 2021-2022 School year:

<u>Fall</u>: Widespread screening testing implemented in schools <u>Summer</u>: Funding period ends 7/31/22

Technical Assistance: School Support Section and ELC

- One-on-one calls with jurisdictions
- Rockefeller STAT K-12 Calls
- Bi-weekly Community of Practice Calls
- Targeted regional and topical calls
- Communication toolkit in development

To get kids back in-person safely, schools should monitor

to help prevent the spread of COVID-19

cdc.gov/coronavirus

Initial K-12 Plans for screening testing

Testing Approaches

BinaxNOW antigen test expansion Pooled specimen (class and lab) NAAT/PCR Saliva and homebased testing Majority to use vendor(s) Turnkey solutions Menu of options ICATT Operation ET Centralized coordination Decentralized

Challenges

School Participation

- Schools overwhelmed by numerous priorities
- For schools that stayed open, uncertainty of the need for screening testing
- Lack of support from parents, community members, state/local government
- Continued concern about testing being painful for students

Trade offs

 Example: Dropping distancing requirements and the need for close contacts to quarantine if schools achieve a certain percentage of participation in screening testing program

Feedback from recipients

Alternatives to full screening testing implementation

- Only providing screening testing at high-risk sports or events
- Testing for surveillance purposes
- Limiting screening testing to a particular subset of students (e.g., those living and going to school in a confinement setting for youths)

Common feedback and requests

- Diagnostic testing
- Ventilation upgrades
- Vaccination promotion

Integrating feedback: Updated ELC Reopening Schools

- Focus remains on screening testing as a critical layer of protection against the spread of COVID-19 in K-12 setting
- Scope broadened and/or explicitly allows for:
 - Diagnostic testing
 - Testing events at school that may include family and/or community members (e.g., athletic events)
 - PPE
 - Portable HEPA filtration units or fans
 - Description of current plan for the Fall and how districts may scale based on community transmission levels

https://www.cdc.gov/ncezid/dpei/pdf/guidance-elc-reopening-schools-508.pdf

Next steps

For more information, contact CDC 1-800-CDC-INFO (232-4636) TTY: 1-888-232-6348 www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

HHS Confidential Information – For Official Use Only – Not to be Disseminated

INFORMATION NOT RELEASABLE TO THE PUBLIC UNLESS AUTHORIZED BY LAW: This information has not been publicly disclosed and may be a privileged, confidential, deliberative, and/or pre-decisional communication. It is for internal government use only and must not be disseminated, distributed, or copied to persons not authorized to receive the information. Unauthorized disclosure may result in prosecution to the full extent of the law.

Operation Expanded Testing

HHS Testing and Diagnostics Work Group

Dr. Matthew Humbard | Operation E.T. Program Lead

AUGUST 2021

Testing and Diagnostics Working Group (TDWG) administers 2 testing programs focused on support of vulnerable and underserved groups

Focus for today

1 Testing Programs

Operation Expanded Testing (Op ET):

- Provides no-cost testing to K-8 schools and underserved congregate settings
- Manages testing through regional "coordination hubs"

Increasing Community Access to Testing (ICATT):

- Provides no-cost testing to underserved populations
- Operates in pharmacies, schools, surge & pop-up sites, hot spots, and priority surveillance locations

Procurement & Distribution

Direct Procurement:

Purchases constrained (Binax)
 or novel (Ellume) supplies and
 distributes to target groups

Federal Supply Schedule (FSS):

• Supports the addition of tests to the FSS

Supply Exchange:

• Offers a forum for orgs. to ask for or offer up testing supplies

Strategic National Stockpile (SNS):

• Builds and stores the national testing supply stockpile

Information Exchange

Industry Engagement:

• Engages with MFRs and labs to assess testing landscape and monitor supply trajectory

State Engagement:

- Enable visibility across TDWG of state specific testing issues
- Assists with SW border migration testing needs

Data Analytics & Informatics:

- Creates automated diagnostic test reporting systems
- Synthesizes federal and state data into cohesive analysis

OpET objective to expand COVID testing for schools, underserved populations and congregate settings via coordination hubs

Program highlights

- Operation E.T. is divided into 4 regions served by 3 coordination hubs, with USG oversight across the entire program
 - West Perkin Elmer
 - Midwest Battelle
 - Northeast Eurofins
 - South Eurofins
- Screening services provided at no-cost to schools and other qualifying sites (e.g., homeless shelters, women's shelters, prisons, HBCUs, congregate settings with high SVIs etc.)
- Coordination hubs work with enrolled sites to create tailored testing plan

Coordination hubs connect testing laboratories with qualifying sites to rapidly establish COVID-19 screening services

1. Patient specific results from non-CLIA certified laboratory cannot be reported to individuals or health care providers, but population-level aggregate results may be reported to public health agencies

FOR OFFICIAL USE ONLY - DO NOT DISTRIBUTE

Hub testing approaches vary by hub, but all will leverage PCR testing with <72h turnaround

	PerkinElmer For the Better	BATTELLE	🛟 eurofins
	West	Midwest	Northeast/South
Test type	PCR, Antigen ¹ Nasal	PCR, Antigen ¹ Nasal, Saliva TBD	PCR, Antigen ¹ Nasal
Pooling approach	Not pooled	5-10 samples	5-24 samples
Turn around time targets	<48 hours for tests	24 hours (for neg. pools) 48 - 72 hours (for pos. pools)	24 hours (for neg. pools) 30 - 48 hours (for pos. pools)

1. Antigen used for select populations only (e.g., screening of symptomatic participants to minimize positive pools, if common carrier shipments are not possible)

FOR OFFICIAL USE ONLY - DO NOT DISTRIBUTE

Examples of enrolled sites from various states

Clark County Fire Dept Boys and Girls Club Nevada YMCA

2 Hawaii

3 K-12 schools Correctional facilities Congregate settings

3 Arkansas 26 prisons via AR Dept of Corrections

Indiana70+ schools6 shelters

5 New York Buffalo School District

Anticipate greater number of school enrollments in upcoming weeks as more school decision makers return from summer recess

Hubs project testing to increase rapidly once schools begin starting in August

For more information, please reach out to the appropriate program manager

HHS Confidential Information – FOIA Exempt – Not to be Disseminated

INFORMATION NOT RELEASABLE TO THE PUBLIC UNLESS AUTHORIZED BY LAW: This information has not been publicly disclosed and may be a privileged, confidential, deliberative, and/or pre-decisional communication. It is for internal government use only and must not be disseminated, distributed, or copied to persons not authorized to receive the information. Unauthorized disclosure may result in prosecution to the full extent of the law.

Testing & Diagnostics Working Group: Increasing Community Access to Testing

NIH RADx Return to School Workshop

AUGUST 9TH 2021

DRAFT - PRE-DECISIONAL & DELIBERATIVE

Agenda

Overview of ICATT School testing initiatives School testing feedback and evaluation Future outlook for school testing DRAFT - PRE-DECISIONAL & DELIBERATIVE

Agenda

Overview of ICATT

School testing initiatives

School testing feedback and evaluation

Future outlook for school testing

Increasing Community Access to Testing (ICATT) has four primary initiatives

Pharmacy partnerships

~15M tests

Offer no-cost testing to underserved and vulnerable populations at pharmacies in all 50 states, DC, and PR

Surge site testing

~1M tests

Rapidly stand-up testing sites in hot spots and priority surveillance locations, in partnership with state and local governments

Pop-up event testing

~2K tests

Offer no-cost testing for events anticipating high volume of testing

DRAFT - PRE-DECISIONAL & DELIBERATIVE

Overview of ICATT

Agenda

School testing initiatives

School testing feedback and evaluation

Future outlook for school testing

ICATT program in schools aims to safely re-open schools in underserved school districts by providing testing resources and operational support to jumpstart national school testing programs

ICATT program in schools has supported the reopening of 150+ schools

Work with existing ICATT testing contractors to collect samples, transport and process tests, and provide follow-up testing options

Provide immediate school testing support to underserved school districts

Help states and school districts transition to longer-term solutions or national testing programs that meet school testing needs

Four criteria guidelines inform ICATT program school district selection

	Criteria	Requirement		
1	High Social Vulnerability	• Top 40% of the national Social Vulnerability Index (SVI) that identifies communities in need of support during a disaster		
2	High Pandemic Vulnerability	 County burden follows a moderate-high Pandemic Vulnerability Index (PVI) with high infection, transmission and testing rates 		
3	Child Poverty	 Beneficiary of the "Families with Food Stamp/SNAP benefits" provided by the National Center for Education Statistics (NCES) 		
4	Immediate Need for Testing Support	 District requires support to open and remain open safely District is prepared to implement school testing within 2-3 weeks 		

ICATT in Schools began testing in April '21 and will continue through Sep '21 Currently supporting testing in 13 states in districts ranging from 1k-40k students & staff

1. Possible opportunity for ICATT extension to continue testing initiatives

Detail: ICATT supports 18 school districts with on-site summer school testing through pharmacy partners

• Summer schools					
	Assigned districts	Waitlisted districts	# of schools (excl. waitlist)	# of tests	
♥CVS Health.	3	-	18	740	
SeTrueNorth	5	1	54	3,512	
	6	-	78	690	
Walgreens	2	1	11	177	
Total	16	2	161	5,119	

Status Update

- Districts continued spring testing into the summer term
- Testing began 7/28 in Harford, MD at a special needs school
- ICATT to understand fall testing plans and transition schools to Op ET

1. Pending contractor selection or selecting self-administered exams (e.g., Ellume)

DRAFT - PRE-DECISIONAL & DELIBERATIVE

Agenda

Overview of ICATT

School testing initiatives

School testing feedback and evaluation

Future outlook for school testing

ICATT team collected learnings & best practices from school testing programs

2		
/		
	Ť	

Optimize testing process and impact on school openings

Improve expansion of ongoing ICATT school programs

Glean best practices to guide execution of Operation ET

School survey stakeholder groups include: pharmacy partners, district staff, school staff & parents/guardians Recurring themes from Feedback on COVID-19 Testing in Schools validate initial objectives and can inform Operation ET or other future school testing programs

Schools struggle to generate testing demand and increase consent rates Initial 2+ week time investment in planning is critical to successful school testing program

Early and ongoing communication with school staff is important to generate testing program support District and school staff pleasantly surprised by quick results and self-swab testing process

Parents & guardians support school testing but are misinformed about program objectives

Source: Feedback on COVID-19 Testing in Schools (Qualtrics) Note: Survey completion is defined as both indicating background information and answering at least one evaluation content question - ICATT in Schools received 110 total submissions, but 26 did not complete background information and 12 did not complete at least one evaluation content question = 110-(26+12) = 72 survey responses

FOIA EXEMPT - DO NOT DISTRIBUTE

DRAFT - PRE-DECISIONAL & DELIBERATIVE

Agenda

Overview of ICATT

School testing initiatives

School testing feedback and evaluation

> Future outlook for school testing

Recent uptick in testing demand calls for further school testing support

Increasing ICATT Testing: June & July '21

- Increased school testing projections for back-to-school in fall '21
 - School districts in AZ, CT, HI, MD, NJ, NY, OH, VA requesting additional ICATT support
- OTC and POC test sales rising across ICATT's pharmacy partners
- HBCU's and state universities request back-to school support
- Federal and state testing mandates require regular testing

Source: Covid Responder 1. Projections based on WOW growth as ICATT testing is increasing significantly and expected to grow in coming weeks

FOIA EXEMPT - DO NOT DISTRIBUTE

Questions?

RADx-UP Coordination and Data Collection Center (CDCC)

August 2021

Duke Clinical Research Institute

SCHOOL OF MEDICINE Center for Health Equity Research

RADx-UP CDCC - Guiding Principles

- Communities are at the center of our work.
- **Data sovereignty** protections and sharing with communities and participants are essential in building trust and being trustworthy.
- Intentional support of study teams is critical to streamline results and troubleshoot.
- **Broad dissemination** of program activities, data, and best practices are key.
- **Strategic partnerships** will augment community benefits from the program.
- Impact will be broad and will inform national guidance, strategy, and response to COVID-19.

CDCC Responsibilities

- Program administration
 - Communications, committees, policies, strategy
- Community engagement
 - Best practices, resources, working groups, community of practice, mini-grants, EITs
- COVID-19 testing technologies
 - Technical support, repository of emerging technologies, pilot grants
- Data and biostatistics
 - Data exchange, harmonization, dissemination, protection, linkages, stats

More on Community Engagement Support

- Disseminate/support best practices and resources for community engagement in underserved populations
- Translate the utility of new testing technologies to communities
- To date
 - 300+ participants at COVID-19 Equity Evidence Academy
 - 20+ best practices/guidance documents
 - 5 working groups
 - 12+ Community Collaboration Mini-grants (and 5 cycles to come)
 - 4+ channels for Community of Practice : Slack, newsletters, meetings,
 CCPH consults

Working Groups

- Child Health
- Engaging Hispanic/Latino/ Latinx Populations
- Building Community Capacity and Impact
- Understanding Social Determinants of COVID-19 Testing and Vaccination
- Engaging Black/African Americans

More on CDCC COVID-19 Testing Support

- Supporting projects with the selection of testing technology
 - Right test is used for the right person, indication, goal, setting
 - FDA EUA
 - To date
 - 75+ testing plans reviewed
 - 15+ projects switched tests from non-FDA EUA to FDA EUA
 - 8+ Rapid pilot projects
- Supporting projects with securing testing supplies
 - Connecting projects/negotiating costs directly with partners, vendors, suppliers
 - >\$850K in cost savings to projects

More on CDCC COVID-19 Testing Support

- Testing resources
 - The FDA <u>lists</u> of authorized assays
 - <u>Testing Tips</u> webpage for selection and use of FDA EUA assays
 - The May 2021 Project-wide Meeting focused on testing; find materials on <u>myRADx-UPhome</u>.
- Discussions with projects via EITs

More on CDCC COVID-19 Data and Biostatistics Support

- Supporting projects with project-level data collection questions
- Cross-consortium data collection and harmonization
 - NIH RADx-UP Common data elements (CDEs)
- Collecting different types of data
 - NIH RADx-UP CDEs, electronic health records, qualitative data
- Linkages with external datasets
 - Adds SDOH and increases impact
- Statistical consultations

Data Flow

DATA SOURCES

DATA REPOSITORIES

What are the NIH RADx-UP Common Data Elements?

- Data items collected in the same format by all projects
- Developed by NIH and catalyzed by the CDCC
- RADx-UP (Phase I) projects contributed
 - Limited, messy, imperfect, and during a pandemic
 - **-** 700+ → 60+
- Tiers
 - Tier 1 = required
 - Tier 2 = recommended
 - New NIH RADx-UP Tier 2 CDEs for pediatrics are in development

Required from all testing Projects	Two components: • CDEs recorded by the participants or Project teams • CDEs recorded by the Project teams	REDCap Data Dictionary Codebook PDF - items #1 - 170 (pages 1-22)	RADx-UP Data Dictionary Codebook CSV – Column B, rows 2-158	RADx-UP PDF form for paper data collection – pages 1-22	
		1			
• Consent • Spoken Language • Health Status • Alcohol and Tobacco • Location • Family Income • Vaccine Acceptance • Identity • Demographics • Work PPE and • Testing (name, address, • Housing Distancing • Symptoms contact information, • Employment • Medical History TIER 2					
Recommended additional CDEs PDF – items #171 – 265 (pages 22-32)		RADx-UP D Dok Dictionary - Codebook Column B, 159-241 (foo starts with	Data RAD for p CSV – lecti rows (form rm name with "tier2_")	x-UP PDF form paper data col- on – pages 23-38 n name starts Tier2)	
Sociod Medica Vaccini Testing	emographics · Medic al History · Alcoh e Acceptance · Drug I g · Disab	l cations Iol and Tobacco Use ility	• Food Insecurity • Housing • Trust • Identity – SSN and	I MRN	

CDF FXPI AINFR - TIFR 1 VS, TIFR 2

Why do we need the NIH RADx-UP Common Data Elements?

- Standardized data collection across community engaged projects
- Provides a path to understanding the nuances of health disparities between and within different communities
- Allows data linkages with external datasets (e.g. SDOH) to augment impact
 - Zip code, county
 - Address (census tract or census block)
 - Name and contact information for future re-contact
- Increases the impact of the RADx-UP program

- CDCC disseminated the NIH RADx-UP CDEs to projects (English and Spanish)
 - Also: data sharing language for the ICF and data use agreements
- CDCC created the codebook for the NIH RADx-UP CDEs (English and Spanish)
 - Ready to upload into databases (e.g., REDCap)
- CDCC provided information and guidance regarding NIH RADx-UP CDEs
 - Written, podcasts, meetings, videos (coming soon)
- Projects are collecting NIH RADx-UP CDEs and uploading data to CDCC
- CDCC will deposit data into the NIH RADx Data Hub

Examples of NIH RADx-UP Tier 1 CDE data

Examples of NIH RADx-UP Tier 1 CDE data

- The CDCC supports >100 projects in the RADx-UP program
- The CDCC is achieving its goals: CE, testing, and data collection
- The CDCC and projects are changing the paradigm of CE research
- Keeping communities at the center of what we do is key to our success

Thank you.

Please contact us with your questions and ideas:

RADx-UP-CDCC@duke.edu

Team Presentations

Chris Lindsey Ph.D.

Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)

Project SafeSchools

Re-opening schools serving Native children and adolescents SAFELY

Return to School August Meeting

Pls: Drs. Allison Barlow, Laura Hammitt, Emily E. Haroz

On behalf of our whole JHCAIH team and partners from the White Mountain Apache and Navajo Nation

This research was, in part, funded by the National Institutes of Health (NIH) Agreement No. 1 OT2 HD107543-01. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the NIH.

Significance

- 1. Native Americans face the highest COVID related health disparities of any racial or ethnic group.
- 2. Most schools serving Native American youth were closed until March or April of 2021.
 - Navajo Nation schools were closed to in-person learning for all of 2020-2021 academic year
 - Virtual learning particularly challenging
 - Opting into in-person learning has been variable
 - Most schools are re-opening for in-person learning for the 2021-2022 academic year
- 3. School attendance and attachment are protective for physical and mental health concerns.

Research Questions

- 1. What are the barriers and facilitators to school re-openings and COVID-19 testing from the perspective of multiple stakeholders involved in schools that serve Native American youth ages 4-16 years?
- 2. How acceptable and feasible are various COVID-19 testing strategies for schools? And what is their impact on in-person attendance rates, children's learning, and quality of teaching from the perspective of families, teachers, administrators and staff?
- 3. What are the educational, social, emotional, physical and mental health impacts of returning to in-person learning for Native American youth ages 4-16 years?

Project Sites

- White Mountain Apache Tribe
 - Pilot project activities began in January 2021 with three schools
 - Expansion to all other schools

~10,000 students & faculty <90% Free or reduced lunch

- Navajo Nation
 - Shiprock Area Schools
 - Tuba City Area Schools

Testing approaches

	Screeni	Surveillance Testing	
_	Rapid Antigen Tests At Schools	Rapid Antigen Tests at Home	Front End PCR Pooling
What tests?	Abbot Binax Now Ellume Home Test Kits	Abbot Binax Now Ellume Home Test Kits	Concentric by Gingko
Frequency	2x per week	2x per week	1-2x per week
Sensitivity/Specificity (asymptomatic)	Binax: 70.2/99.6 ¹ Ellume: 91/96 ²	Binax: 70.2/99.6 ¹ Ellume: 91/96 ²	96/100 ³

Teachers	Studonts	Both
& Staff	Students	Dotti

Design and analytic plan

Longitudinal observational cohort

- Convergent mixed-methods design
 - Qualitative guides informed by Theoretical Domains Framework to understand behavior change and implementation outcomes
- Surveys to understand testing implementation attitudes
- Mental health assessments
- Secondary data analysis of school testing data
- Target sample sizes for primary data collection
 - 500 caregivers
 - 120 youth (11-16)
 - 120 school employees

Results to date

Community & school engagement activities

- Community Advisory Boards (CABs) in each site
- Community and school engagement activities
- Local approvals
- Three IRBs

<u>Community & school engagement activities</u>

• An estimated 140 meetings held with community partners by our team members since May 1st 2021.

<u>Research approval processes</u>

Approvals

WUSD School Board

CBQ School Board

TR School Board

CUSD School Board

PUSD School Board

Navajo Prep School Board

TCUSD School Board

CCSD School Board

NNMC Hospital CEO

CSU CEO

WR CEO

Chief of Pediatrics Tuba City

Navajo Area Office

WMAT Health Board

WMAT Tribal Council

Shiprock Agency Council

Tuba City Chapter Approval

. . . .

Western Agency Council

Chinle Chapter Approval

Chinle Agency Council

School testing data May 1 – July 15 N = 540 n = 289 school personnel n = 217 students

Over 3000 tests administered

Figure 1. Testing dashboard for 2x weekly antigen testing approach

Number of Positive Tests

positive tests represent unique cases

Number of tests administered at each school

Number of tests by role

School testing data May 1 – July 15 N = 540 n = 289 school personnel n = 217 students

<u>Testing Uptake</u> May 1 – July 15

Zero cases and low community transmission

<u>Reach of testing overall</u> May 1 – August 1

540 people tested out of our projected 1,300 people in year 1 through our partnerships with schools implementing COVID-19 testing

- Overwhelming demand with schools interested and exceeding our projections for participation
- Exploring leveraging state funding

Move towards pooled PCR testing

Total Pools, Swabs, Pool Size, Tumaround Time, and People Tested by Week

Week	111	Total Pools	Total Swabs	Average Swabs per Pool	Average Turnaround Time in Hours	Approximate number of people tested
July 26, 2021 - August 01, 2021		2	31	15.5	32	31
June 21, 2021 - June 27, 2021		1	22	22	31	22
June 14, 2021 - June 20, 2021		2	30	15	29	30
June 07, 2021 - June 13, 2021		2	30	15	30	30

Research recruitment

Challenges & lessons learned

Increased funding, but a real need for implementation support

No brain ticklers for school testing!

Schools use swabs like Q-tips that only go in the lower part of the nose. Its easy, fast, and comfortable.

Testing uptake by parents is challenging at the beginning; address myths and beliefs head on and using multiple strategies

Partner research and practice to enhance reach and impact

<u>Resources for schools serving</u> <u>Native American communities</u>

https://caih.jhu.edu/schoolresources/

Project SafeSchools

Working together to make in-person learning safer for ALL.

ReSET: Restarting Safe Education and Testing for Children with Medical Complexity

University of Wisconsin-Madison

Research Objectives

Increase safe return to school for children with medical complexity (CMC) and school personnel through 3 complementary approaches:

Consensus priorities for safe in-person school (Aim 3)

Home and School Testing Feasibility

BinaxNOW Rapid Antigen Platform

In-Home Cohort

 Recruited from UW Pediatric Complex Care Program

• Parents test twice-weekly

School Cohort

- Recruited from Waisman Early Childhood Program
 - 30% have developmental disabilities
- ReSET staff test twice-weekly

Aim 1 – Adaptive Design

Start (4/2021)	Month 3	← 9/2021	2021-2022 Academic Year	6/2022 →	Month 15
In-home cohort Aim 1a		Community Sp Parent opts int	read ≤ CDC Risk Threshold? o symptom-based testing?		N
Surveillance 2x weekly	Syr	nptom-based test	ing (otherwise continue survei	llance)	
2		Weekly Testing Da	ta (Parent-report)		
	Quar	terly School Percept	ion Data (Parent-report)		
- 444					

Recruitment and Enrollment

Monthly Enrollment and Surveillance Testing

Demographics of Study Cohorts

	Testing			Non-testing
	In-Home	In-School Kids	In-School Staff	Survey
Enrolled, n	44	13 of 57 (23%)	18 of 23 (78%)	1014
Age, years				
1-4	-	8 (62)	-	2 (0.2)
5-10	24 (55)	2 (15)	-	393 (38.9)
11-13	10 (23)	-	-	235 (23.3)
14-17	4 (8)	-	-	379 (37.6)
Not yet reported	6 (14)	3 (23)	-	-
Grade				
PreK-5	25 (57)	13 (100)	-	453 (44.6)
6-8	11 (25)	-	-	244 (24.1)
9-12	1 (2)	-	-	317 (31.3)
Not yet reported	7 (16)	-	-	-
Race/Ethnicity				
White, non-Hispanic	26 (59)	8 (62)	11 (61)	776 (76.7)
Black, non-Hispanic	2 (5)	1 (8)	-	30 (3.0)
Hispanic	5 (11)	-	-	86 (8.5)
Multiracial	1(3)	-	-	46 (4.5)
Other	5 (11)	3 (22)	2 (11)	55 (5.4)
Not yet reported	5 (11)	1 (8)	5 (28)	19 (1.9)

In-Home Testing Cohort

NOG.
W

Clinical Characteristics	%
Neurologic disease	91
GI disease	78
Genetic / metabolic disease	42
Cardiovascular disease	40
Subspecialists, mean	7.3
Medications, mean	9.0
Children's hospital distance, mean	64 min

Devices	%
Enteral Tube	78
Home Oxygen	42
BiPAP or CPAP	20
Tracheostomy	13

Early data suggest BinaxNOW Ag surveillance testing is <u>feasible</u> for CMC

Test Feasibility

-	In-Home Cohort, n (%)	In-School Cohort, n (%)
Total BinaxNOW Tests Conducted	505	536
Surveillance (asymptomatic)	467 (92.5)	518 (96.6)
Symptomatic	38 (7.5)	18 (3.4)
Weekly test log response rate	252 / 277 (93)	N/A
Tests / subject / week, mean	1.9	1.6
Test rate (actual / expected)	505 / 554 (91)	536 / 615 (87)
Importance to continue testing	83% very or extremely	N/A

Test Results

-	In-Home Cohort	In-School Cohort
Positive BinaxNOW Tests	0	8
Symptomatic Positive	-	7
Asymptomatic Positive		1
Overall BinaxNOW positive rate	NA	1.5%
# PCR confirmed	-	0
# PCR negative		8
False-positive rate	NA	1.5%

In-Home Testing Challenges are Rare

Many CMC were <u>not at school</u> at the end of last academic year

School Attendance for CMC at end of 2021

Parent Perceived Risk for CMC Getting COVID at School

Demographics, testing, and vaccine perceptions may be weaker drivers of inperson school

In-home Testing Cohort – School Attendance

	Not Attending	Attending	P
Grade			
K-5	61%	74%	0.60
6-8	33%	26%	
9-12	6%	0%	
Race/Ethnicity			
White, non-Hispanic	78%	67%	0.73
Black, non-Hispanic	0%	10%	
Hispanic	11%	14%	
Other	11%	10%	
Gender			
Female	44%	33%	0.53
Non-English Language	17%	14%	1.00
COVID-19 Vaccine			
At least 1 dose	28%	14%	0.43
None	72%	86%	
COVID-19 History			
Ever Positive	0%	11%	0.49
None	100%	89%	

Non-testing (Survey) Cohort – School Attendance

	Not Attending	Attending	P
Grade			
K-5	40%	44%	0.008
6-8	20%	26%	
9-12	40%	30%	
Race/Ethnicity			
White, non-Hispanic	80%	79%	0.45
Black, non-Hispanic	5%	5%	
Hispanic	7%	10%	
Other	9%	6%	
Gender			
Female	52%	52%	0.15
Non-English Language	9%	9%	0.94
COVID-19 Vaccine			
At least 1 dose	45%	34%	0.007
None	55%	66%	
COVID-19 History			
Ever Positive	8%	14%	0.08
None	92%	86%	

Demographics, testing, or vaccine perceptions may be weaker drivers of inperson school

CMC school attendance and <u>confidence in</u> <u>school mitigation</u> plans strongly related

In-home Testing Cohort – School Perceptions

Non-testing (Survey) Cohort – School Perceptions

Transportation to school is not difficult Child and caregivers have access to needed PPE School has adequate access to wash Unlikely to get COVID-19 at school Child is able to wear a mask Importance of attendance to child's health School able to follow recommendations In-person better for child than virtual Want child to attend in-person No concern about PPE quantity No concern school can take all precautions needed Attending school positively impacts family No concern about number of people around child No concern about how close people have to be to child No concern about amount of testing at school Attending school positively impacts staff and teachers Attending school positively impacts classmates Teacher encouraged child attendance Attending school helps family keep jobs No concern about other children following recs Therapy needs only met in-person Most interacting with child are fully vaccinated

All *p*<0.01

100

Changing to In-Home Symptom Testing

	Symptomatic	Surveillance	Ρ
Desire child to attend in-person	46%	55%	0.39
School able to follow recommendations to keep child safe	88%	31%	0.03
School can take all precautions to stop COVID spread	88%	38%	0.03
No concern about PPE quantity	88%	38%	0.03
Most or all interacting with child are fully vaccinated	63%	6%	0.01

Two-thirds of families want to <u>continue in-home surveillance</u> testing

Less school mitigation confidence associated with continued surveillance testing

No associations with demographics, CMC COVID-19 vaccination status, or CMC history of COVID-19

To support CMC attending school

- Schools likely need to...
 - <u>Use</u> recommended mitigation strategies
 mask (PPE), vaccinate, distance, hygiene, etc
 - <u>Communicate</u> mitigation plans to families
 - Engage families
 - Teacher encouragement for CMC to attend assoc with 7x higher odds of in-person attendance (p=0.006)

Parents perception of schools

- Parents perceiving school not using mitigation strategies:
 - are less likely to have their child in school
 - also prefer more in-home (surveillance) testing

 Could providing in-home tests to families concerned with school safety address concern & boost attendance?

Statewide Consensus Priorities

WI stakeholder consensus priorities for safe in-person school for CMC

WWW.RESET4KIDS.ORG

Restarting Safe Education & Testing (ReSET)

for Children with Medical Complexity

Priorities for a Safe Return to School for Children with Complex Health Needs

Children with complex health needs have serious medical conditions and often rely on medical devices or people to help them with daily activities

Safe in person school attendance can be hard because these children are at higher risk of severe COVID-19, their daily care can include high-risk procedures, and physical distancing and mask adherence can be difficult.

The unique circumstances facing children with complex health needs require extra attention to support safe in-person school attendance.

In Spring 2021, 460 Wisconsin families, school staff, and clinicians sent us over 1.100 ideas on how to help these children attend school during the pandemic. The top 10 ideas shown below were prioritized by a team of 35 experts representing families, schools, clinicians and policymakers across Wisconsin.

As a central principle, the safety of childron with complex health needs requires the safety of all children and staff at school. Families of children with complex health needs should be supported to make the best decision for their child with their health care providers and school staff when considering the risks of COVID-19.

experts reviewed & prioritized the ideas

IN FIRST WEEK

- >1000 views>650 unique users in 4 countries
- >200 downloads

CURRENT RESOURCES

- Top 10 consensus priorities
- "1-pager"
- Family FAQ guide
- Healthcare provider template letter
- Social Media content
- More on the way

PRIORITY SUMMARY

- Universal masks, vaccination, school testing
- Respiratory protection plans for staff
- Single use medical equipment
- Safety plans within IEPs, flexible curriculum
- Staff education on CMC, nurse available
- Healthcare team partner, transportation plan

Challenges and Next Steps

Challenges

- Low in-school testing enthusiasm
 - Enroll direct to symptomatic testing
 - Offer in-home (symptomatic) testing
 - This is what we hear parents want
 - Talking with additional schools
 - Talking with WI testing program
- Low (zero) case detection with asymptomatic testing
- Unknown impact of increases in other respiratory viruses

Next Steps

- Finish data collection and analyses
- Longitudinal analyses
 - Repeated surveys, trends
 - ▲ School perceptions associated with △ from surveillance to symptom testing
- Further develop and promote resource inventory

Thank you! Questions?

It's back to school time!

View priorities for a safe return to school for children with complex health needs at

reset4kids.org

Ryan Coller rcoller@pediatrics.wisc.edu

ReSET

Greg DeMuri demuri@pediatrics.wisc.edu

Gemma Warner gwarner@pediatrics.wisc.edu

<u>reset@pediatrics.wisc.edu</u>

RADx-UP Presentation Return to School

August 9, 2021

Presentation Outline

- 1. ROSSEY Overview
- 2. Aim 1: Key Stakeholder Interviews, Focus Groups & Child Interviews Update and Preliminary Themes
- 3. Aim 2: Testing Program (COVID-19 Testing + Health Education with Comic Books)
- 4. RADx-Up Return to School Diagnostic Testing Lessons and Next Steps

Collaborators

- University of Washington School of Public Health and School of Medicine
- Fred Hutchinson Cancer Research Center and Center for Community Health Promotion
- Yakima School District
- Community Advisory Board (CAB)
 - Representing three school districts, Yakima Health District, and the Farmworkers' Clinic

Center for Community Health Promotion Centro para Promover la Salud Comunitaria

Study Aims

Aim 1. Identify rural Latino community's social, ethical, behavioral needs and resources for students to return to school and maintain onsite learning using qualitative assessments with school stakeholders, parents, and students.

Aim 2. Evaluate the effectiveness of a testing program (SARS-CoV-2 testing + risk communication) on student attendance using a cluster randomized controlled trial (RCT) with two intervention arms: current learning model (comparison) and testing program.

Aim 3. Assess implementation outcomes of the testing program with school stakeholders, parents, and children guided by the RE-AIM framework.

Map of Washington

Yakima Valley

- Small agricultural communities (apples, pears, peaches, cherries, grapes, and hops)
- Census 2011: Lower Valley has a population of about 100,000
 - ~65% of residents are of Hispanic/Latino
 - Among these residents, 95% are Mexican-American

Aim 1

Identify the rural Latino community's social, ethical, behavioral needs and resources for students to return to school and maintain onsite learning.

- Key Stakeholder Interviews (n=20)
 - Completed 19 interviews
 - Reached saturation
- Parent Focus Group (n=4)
 - 2 English (with 5 & 7 participants)
 - 2 Spanish (with 6 & 8 participants)
- Child Interviews (n=20)
 - 16 interviews completed, 3 scheduled, 1 pending

Theme 1: COVID-19 pandemic on social, economic, & mental health

- The COVID-19 pandemic impacted families' social, economic, and mental health and required lifestyle adjustments to meet demands.
 - "Elders pa[id] the price" unable to attend social gatherings, leading to further isolation.
 - Struggling businesses and loss of employment.
- Children's mental health issues
 - Lack of social interaction; Difficulties of remote learning; Loss of family members and/or teachers.
- Fatigue with mask wearing among families even after vaccination.
- "We're looking forward to a brighter next step."

Theme 2: Schools commitment to evolving needs of students

- Schools provided teachers and families with resources to adjust to the new learning mode
 - secured laptops and hotspots for children
 - created troubleshooting resources for parents
 - helped teachers familiarize with technology
 - weekly meal pick up for students
 - enhanced communication to increase sense of togetherness
- Created a safe environment for children to return to school
 - monitoring temperature
 - providing extra masks
 - hand sanitizers before entering schools and inside/outside each classroom

Theme 2 cont.

- Teachers noted many homes were not good learning environments
 - Iack of space for children to immerse in learning
 - distraction in the home environment
 - e.g. living room served many purposes
 - children being pulled in the middle of the classroom to finish chores
 - parents' limited technology literacy to help their children
- Concerns about widening learning gaps
 - some teachers went above and beyond meeting with parents to provide technical support to improve children's participation
- Even in the presence of resources, we heard disparities in the impact of policies among communities experiencing SDH

Theme 3: Using testing for school reopening

- All participants were supportive of using testing as a way to return to schools
 - noted needs to educate families about the advances in testing technology (saliva testing, interior nasal swabbing)
 - the benefits of testing (for families more concerned about quarantining after positive test results)
 - dismantle stigma around positive tests
- Mixed opinions on how to implement testing in schools
 provide testing to all students given many children are asymptomatic
 should stay optional as it was within students' rights
- Most agreed that families will participate in testing
 - has become a familiar procedure during the pandemic

Theme 4: Vaccine concerns

- Lack of education about the benefits of testing and discommunication in community.
 - negative perceptions from multiple sources (e.g., disproven scientific paper on vaccine side effects from measles, "bad" experiences with side effects being magnified)
 - Iong-term side effects
 - vaccine causing sterilization
 - mistrust for government and science microchips in the vaccine
 - religiosity-related concerns mRNA affecting the DNA that was created by God, vaccine using fetal tissue, vaccine being the mark of the devil/Satan (Patent #666)

Child Interviews – Five main themes

- Quarantine and social distancing are difficult and often stressful
 - Took a toll on their "feelings and emotions"
- "A fear of what they put" in the vaccine
 - Getting the vaccine will get the "government to control"
 - "Vaccines will have magnets or chip"
 - Getting the vaccine will only make me more sicker"
- Fear of side effects from getting the vaccine
 - J&J vaccine giving young adults heart problems and blood clots
- Family have a strong influence on them getting the vaccine
- Main motivation for getting tested is "wanting the pandemic to end"

Aim 2 pilot study in May – June 2021 with one school then 4 additional during summer school to understand the implementation steps.

- 70 interested participants
- 46 total enrolled participants
- Discovery Lab School (K-8) participated as the spring pilot school
 - 24 / 27 enrollments did not continue after spring semester
- Extension of pilot to 4 summer school programs during a 6-week period (June 21-July 23)

COVID-19 positivity rate

- 27 (59%) participants preferred home collection
- 3 COVID-19 positive cases (one family household)

Pilot Demographics: Age (n=46)

ROSSEY

Race/Ethnicity (n=46)

RACE

ETHNICITY

Non-Hispanic/Latino

Position and Grade Level

POSITION IN SCHOOL

Teacher
Administrator
Student
Other
Prefers not to specify
4% 2%

GRADE LEVEL (STUDENTS ONLY)

■ K-2nd ■ 3rd-5th ■ 6th-8th

Enrollment Trends

*Not including Role Not Specified (n=1)

Comic Book 1: Playdate during the pandemic

 Follows the main characters (siblings Hector, Mya, and Ava and their friend Aaron) and their experiences during the COVID-19 pandemic.

Comics

- 3 comics tailored for students (masking, testing, vaccine)
- 2 comics tailored for parents (focusing on misinformation discovered from qualitative work)
- Messages infused with constructs from the Health Beliefs Model and the Self Determination Theory

Key Take-aways From Pilot

- Recruitment and enrollment have been more challenging than anticipated
- Simplified consent forms and hands-on recruitment for Spanish speaking parents
- Logistics for multiple schools are manageable with trained staff
- Multiple recruitment strategies needed
- CAB's preference for parent-facing education tool on video format (rather than comic book)

Next Steps

- Full trial enrollment starts on 8/25/21 (start of school year)
 Goal of 900 children
- Address concerns for randomization in the trial design
- Will monitor testing fatigue during the full study period
- Strategies to address testing fatigue
 - Coordinate with school testing activities to avoid overlap
 - Education video to reframe the testing technology and burden of testing

Questions

Thank you for your attention Questions? ¿Tienen Preguntas?

SARS-CoV-2 Screening and Diagnostic testing for return to K-12 schools

Kanecia Zimmerman, MD MPH Monday, August 9th, 2021

Agenda

Project Overview

- Project overview and scope
- Recruitment Testing Initiative
- Major Outcomes to Date
 - Community Engagement and Education
 - Outcomes of testing program
 - Qualitative data
- Lessons Learned
- Next Steps

Two major problems to solve:

With mitigation strategies in place (masking, hand hygiene, physical distancing), within school transmission is low and schools can safely reopen.

Even as schools are reopening:

- Black and Latino students have been less likely to return in-person to school compared to white students
- Quarantine requirements after exposure have led to prolonged periods of time out of schools (substantial individual and community risk:benefit)
 - Inherently worse among those with limited access/uptake of testing after exposure
 - Access to testing has been more limited in underserved communities.

Overview: Project Scope and Goals

Long-term goals: to ensure the safe and equitable return of K-12 school children to US public schools, maximize access to in-person learning, and limit the spread of SARS-CoV-2 in Black and Latino communities.

- <u>AIM 1</u>: Assess the effectiveness of rapid, school-based SARS-CoV-2 screening testing in reducing within-school transmission and restoring trust among Black and Latino families.
- <u>AIM 2</u>: Assess uptake of school-based testing and time to safe school return after exposure.
- <u>AIM 3</u>: Identify the perceived benefits, concerns, and barriers to school-based SARS-CoV-2 testing and in-person learning among Black and Latino families.

Recruitment – Testing Initiative

Learning | Informed Decision-Making | Research

Enrollment

Durham Charter Schools Enrollment

Enrollment by Race/Ethnicity

Cumulative Enrollment by Race/Ethnicity

Iredell-Statesville Schools Enrollment

Cumulative Enrollment by Race/Ethnicity

Major Outcomes to Date

Learning | Informed Decision-Making | Research

Major Outcomes: Community engagement and education

- Over 50 school board meetings to provide expertise and answer questions ~60% k-12 masked in NC
 - ~20% unmasked but monitoring and providing data
- Hundreds of faculty to school leadership calls
- 10s of school/district-wide staff meetings
- Dozens of meetings with community members
- Extensive interaction with NCDHHS, DPI, General Assembly
 - NC legislation to require access to in-person school (March 2020)
- Extensive educational resources:
 - Abcsciencecollaborative.org
 - Testing infographics/flowchart and decision tree
 - Vaccination videos
 - Lay summaries and reports
 - Media briefings on available data
 - "Year in Review"

School Testing: Testing Results

Key takeaways and findings from the testing initiative to date:

- None of the positive cases in the Durham Charter
 Schools were identified through the screening testing
 initiative; no effect on within-school transmission
- The proportion of positive tests after initiation of the testing program dropped substantially, suggesting that the RTS program increased total testing access and that testing access was not biased by concerns for test positivity.

Reported cases and secondary transmission in Durham Charter Schools prior to and during testing initiative

		STUDENTS			STAFF				
		Primary cases		Secondary Transmission		Primary cases		Secondary Transmission	
Before After		Before	After	Before	After	Before	After		
		testing	testing*	testing	testing*	testing	testing*	testing	testing*
OL	Carter	0	0	0	0	0	0	0	0
	CPSFC	1	4	0	0	0	1	0	0
9	IDYL	0	0	0	0	0	0	0	0
SCI	Kestrel	0	0	0	0	0	0	0	0
	Voyager	1	3	0	0	0	1	0	0

Results of exposure testing after known COVID-19 exposure among students and staff in all ISS prior to and during the testing initiative

	Before Testing Program	After Testing Program	Totals
	N (%)	N (%)*	N (%)
Negative Test	21(42)	275 (91)	296 (84)
Positive Test	29 (58)	27 (9)	56 (16)
Totals	50	302	352

School Testing Results: Effect on Access

Key takeaways and findings from the testing initiative to date

- The exposure testing program increased access to testing.
- The percentage of exposed students and staff tested after the initiation of the testing program increased by 29 percentage points. Only 8% of exposed individuals were tested prior to the testing program, whereas 37% of exposed individuals were tested after.
- Access to testing increased in both schools with high proportions of underserved populations as well as in schools where the testing program was expanded.

Table 7. Exposure testing access in all Iredell Statesville Schools*

	Before testing program	After testing program	Total
	N (%)	N (%)	N (%)
Not tested	567 (92)	524 (63)	1091 (76)
Tested	50 (8)	302 (37)	352 (24)
Totals	617	826	1443

Table 9. Comparison of exposure testing access in pre-specified Iredell Statesville Schools** vs other Iredell Statesville Schools with expanded testing

	Proportion tested before	Proportion tested after
Pre-specified Iredell Statesville Schools	0.09929078	0.285371703
Iredell Statesville Schools participating in expanded testing	0.077731	0.447433

*Pearson chi2(1) = 155.0863 Pr = 0.000

**Pre-specified Iredell Statesville Schools include the seven (7) schools previously designated in the grant application to have high proportions of underserved populations

School Testing Results: Effect on Quarantine Duration

Key takeaways and findings from the testing initiative to date

- Duration of quarantine decreased after initiation of the testing program.
- This has a large impact on reducing the time missed from school due to quarantine and with-in school exposures.

Table 10. Days of quarantine in all ISS after in-school exposure*

	Before testing program	After testing program	Total
	N (%)	N (%)	N (%)
Quarantine<10 days	136 (22)	409 (50)	545 (38)
Quarantine ≥10 days	481 (78)	417 (50)	898 (62)
Total	617	826	1443

Table 11. Days of quarantine in pre-specified ISS

	Before testing program	After testing program	Total
	N (%)	N (%)	N (%)
Quarantine<10 days	32 (23)	196 (47)	228 (41)
Quarantine ≥10 days	109 (77)	221 (53)	330 (59)
Total	141	417	558

Qualitative Investigation: Phase 1

- Identify the preferences for and perceived outcomes of school-based SARS-CoV-2 testing among parents and caregivers of Black and Latino/a/x students and school personnel
- Describe factors influencing decisions to return to school among parents and caregivers of Black and Latino/a/x students

	No. (%)
Characteristic	n=6
Age	
30-39	1 (16.7)
40-49	3 (50.0)
50-59	1 (16.7)
60-69	0 (0.0)
70-79	1 (16.7)
Gender	
Cisgender female	6 (100.0)
Race	
Black or African American	6 (100.0)
Hispanic/Latino/a/x ethnicity	1 (16.7)
Highest Level of Education	
High school graduate/GED	2 (33.3)
Technical/Vocational/Associate's degree	1 (16.7)
Master's degree	3 (50.0)

	No. (%)
Characteristic	n=7
Age	
30-39	1 (14.3)
40-49	6 (85.7)
Gender	
Cisgender female	6 (85.7)
Cisgender male	1 (14.3)
Race	
Black or African American	2 (28.6)
White	5 (71.4)
Hispanic/Latino/a/x ethnicity	1 (14.3)
Highest Level of Education	
Bachelor's degree	2 (28.6)
Master's degree	5 (71.4)
Position	
Teacher	7 (100.0
Grade levels taught	
Kindergarten-3	2 (28.6)
4-8	3 (42.9)
9-12	2 (28.6)

Qualitative Investigation: School Personnel and Parent/Caregiver Perspectives

School Personnel Perspectives	Parent/Caregiver Perspectives
 Suggestions for School Based Testing: Parental involvement and consent is needed The framing/presentation of the testing program to the school community is important for the acceptance Communication of clear expectations is important for acceptance 	 Possible benefits of School-Based Testing Providing a safe school environment Providing families with peace of mind Reducing community spread Concerns about School-Based Testing
 Communications with parents about school testing should be science- and data-based 	• Who is administering the test
 Teacher involvement is important in designing the testing program to provide input on how best to minimize teacher burden and classroom disruptions 	 How students' privacy will be maintained Accuracy of home-based test results Some parents described experiences with school-based stigma or discrimination due to race prior to the pandemic

Qualitative Investigation: Main Findings

School Personnel Perspectives	Parent/Caregiver Perspectives
 School Personnel Perspectives Suggestions for Return to In-School Learning Schools need clear and consistent COVID-19 protocols Healthcare professionals should make contact with affected families Schools should develop plans for keeping students who test positive engaged during the quarantine period 	 <u>Facilitators for Return to In-School Learning</u> Providing school-based testing influences some parental/caregiver decisions School personnel should be notified of students' test results because of the exposure risk.
	 Teachers should prepare take-home materials and care packages for students who are diagnosed with COVID-19 <u>Barriers for Return to In-School Learning</u>
	 Decisions about returning to in-school learning were rarely impacted by experiences with stigma or discrimination prior to the pandemic
	 Concern about adherence to safety procedures by parents/caregivers, students, and schools The potential for exposure for children and their families

Qualitative Investigation: Dissemination and Program Outcomes

Dissemination of Findings

- Health and education stakeholders received a rapid analysis report that summarizes key points
- Community stakeholders received a rapid analysis report that summarizes key points
- Participants received a brief summary of the research findings, immediately prior to the release of the rapid analysis report
- Education stakeholders received a detailed report after the formal analyses using applied thematic analysis are complete

Outcomes

- Increased interest in participating in future qualitative rounds
- Opportunity to reimagine testing
- Meetings organized with state officials on potential ABC-NC Gov collaboration related to school testing

Community Response to our Work

"I just personally want to say thank you to the entire ABC Science Collaborative Team. For over a year, you all have put in tireless hours for the people and schools in NC. Through your work, [School Name] has been open for 3 weeks successfully and has implemented all the health and safety protocols we learned through working with the ABC Science Collaborative team. While, I know it is a day-by-day effort, and staying diligent with the safety protocols, I know schools can open for students. Please know we value the partnership and will support any of your efforts and initiatives."

"Our daughters will return to school in-person in August. Only two of our four daughters are old enough to be vaccinated...we will continue to practice the 3W's as we re-introduce ourselves back into in-person everything. Thanks again for everything y'all are doing in the COVID world. You have no idea how much families like mine appreciate and value your work. It's literally keeping us safe, healthy and alive! Stay well!"

Lessons Learned

School Testing and Postulates for Variable Recruitment

School Testing Results: Key Takeaways

- In schools where screening testing was conducted, we found:
 - Enrollment was lower than expected
 - No positives
 - No secondary transmission in schools with mitigation strategies in place
- Offering testing after exposure is helpful associated with increased testing uptake
- Able to make an impact on missed school days
- Dissemination and response to community requests are important
 - Can we reimagine our testing program in a way that is most useful for the community?
- Testing can be helpful in schools, but in this political climate, <u>if our goal is safe return to in-</u> person school, k-12 communities need:
 - Access to the science in order to weight risks and benefits of COVID-19 mitigation efforts (ex. masking/testing protocol)
 - Advocacy from those who understand what is happening on the ground.

Postulates for variable recruitment

Postulate	Solution
School leaders and parents may have different goals as it pertains to testing and COVID-19 in general; Families on the fence may need evidence of benefit	 Continued dissemination of testing results Concentration on areas where clear evidence of benefit Re-imagine testing program based on feedback from qualitative aims.
COVID-19 fatigue/substantial politicization	• Continued community engagement; boots on the ground to be able to relate to parents and other community members; changing COVID-19 dynamic (delta variant)
Concerns about privacy	At home testing pilot
Hesitancy from school leaders to push testing initiative (end of the year protocols)	 New school year, new variants, more children in schools may prompt school leaders to encourage testing Important to note that school leaders are facing many obstacles
Parents who decided to return to school this spring may general represent a cohort that is less interested in testing	 Introduce possibility of testing to new cohort of parents with children returning to school (qualitative study suggests parents who were remote may be interested)
New state resources (from federal funds) to support testing in schools	 So far, schools remain interested in Duke collaboration (relationship and benefit beyond testing) Look to collaborate with the state

Next Steps

Learning | Informed Decision-Making | Research

Next Steps

- Dissemination of findings through manuscripts (*Pediatrics* supplement)
- Continued dissemination to the public (lay summaries)
- Use data from qualitative evaluation (and available scientific evidence) to revamp testing programs --> expansion of testing opportunities in some partner schools
- Expand reach collaborations with additional districts
- Collaboration with NCDHHS on state/federally-sponsored testing program
- Qualitative program: phase 2

Study Email: Study@dm.duke.edu

Learning | Informed Decision-Making | Research
School TLC Study

Support for Safe Return to In-Person School: COVID-19 Testing, Learning, and Consultation

Dana Keener Mast, PhD, ICF Jennifer Goldman, MD, CMKC Jennifer Schuster, MD, CMKC

RADx-UP Return to School Phase I and II Workshop

August 9, 2021

Test Preference Study

Aim: Determine preferred testing strategy among students and staff

We collected a **nasal swab** and **saliva sample** from 135 study participants and asked,

"Which test did you like better?"

135 study participants

50%	students
50%	adult staff
54%	female
32%	Hispanic/Latino
21%	Black non-Hispanic
34%	White non-Hispanic

13% Other race

Most participants preferred the nasal swab

Test preference **varied by age group**, with adults strongly preferring the nasal swab and elementary students split almost 50/50

Hispanic/Latino participants slightly preferred the saliva test-this group included more elementary students

Females had a stronger preference for the nasal swab than males

Testing Preference Study

Those who preferred the nasal swab... (n=99)

...liked the **nasal swab** better because

It was faster (60%)

It was easier (60%)

...did not like the **saliva test** as much because

It took too long (51%)

It was hard to do (49%)

It was gross (28%)

Those who preferred the saliva test... (n=36)

Formative Needs Assessment

Aim: Identify attitudes, knowledge, and barriers that influence choice to enroll in testing and return to in-person learning

Parents largely support COVID-19 testing in school

Even so, less than 4% of students enrolled in testing in phase 1

Not wanting child tested "when I'm not there" was the top reason for not enrolling child in testing

Please check all the reasons you chose not to have your child tested for COVID-19 at school?

Nearly 3 out of 4 parents said that required masking is important to them while children are in school

Which of the following activities are important to you while your child goes to school in person?

Lessons Learned from Testing in Schools

Opportunities to **connect directly with parents** is far more effective than email for increasing enrollment in testing.

Framing COVID-19 testing as a school safety measure was more motivating than promoting "free testing" or a research study.

Strong relationships with school nurses facilitated school communications, testing setup, symptomatic testing, and reporting results.

Trusted school champions were instrumental in recruiting staff and students for testing.

Clear communication with school staff about the who, what, when, and where of testing ensures families receive accurate information.

Athletic coaches were effective in encouraging parents to enroll students in testing.

Total Enrolled = 152 Total Tested = 140

Strategies to Address Testing Fatigue

- We have not done repeat testing to date, but will begin weekly testing in the Fall
- Surge in Delta variant is renewing commitment to COVID-19 mitigation
- Messaging "Help us keep kids safe and in school"

Phase 2: Enhanced Intervention

COVID-19 Testing

- Weekly screening
- Symptomatic testing
- Nasal swab

Medical Consultation

- Monthly school walkthroughs and consults
- Bimonthly COVID-19 quick facts
- Family forums

Tailored Communications

- Multicultural messaging
- Microsite communication resources hub
- Social media buys
- Targeting testing and masking behavior

Phase 2: Comparative Outcomes Study

Aim: Determine how schools receiving enhanced intervention compare to schools receiving "testing as usual" on key metrics

Metrics

Absenteeism

Case counts

Vaccination rates

Parent satisfaction

Data Sources

Secondary district and school data

Repeated parent survey

Safe Return to School for Children with Intellectual/Developmental Disabilities

Luther Kalb, PhD, MHS Director of Informatics Center for Autism and Related Disorders Department of Neuropsychology Kennedy Krieger Institute

Assistant Professor Department of Mental Health Johns Hopkins Bloomberg School of Public Health

Chair, National Research Consortium on MH-IDD Center for START Services University of New Hampshire

GOMPASS-T

Christina A Gurnett, MD, PhD

Ernest and Jane G. Stein Professor of Developmental Neurology Director of the Division of Pediatric and Developmental Neurology Co-Director of the IDDRC Washington University in St Louis

Jason Newland, MD, M.Ed.

Professor of Pediatrics Pediatric Infectious Diseases Washington University, St. Louis

Impact of COVID-19 on persons with IDD

CHI health Food Fitness Wellness Parenting Vital Signs

· LIVE TV Edition ~ Q (C

LIVE Watch winds from Hurricane Sally hit New Orleans

Covid-19 has disproportionately impacted those living with developmental disabilities

By Naomi Thomas, CNN Updated 8:08 PM ET, Fri August 28, 2020

CNN Heroes: A lifeline for people with disabilities in Colombia 01:10

(CNN) — The coronavirus pandemic has had an especially harsh impact on people with

Impact of COVID-19 on persons with IDD

- Direct effect of COVID-19 on children's health
 - Fatality rate 1.6% for children with IDD vs <0.1% neurotypical children (Turk et al., 2020)
- Loss of Services (Constantino et al., 2020)
 - Therapy
 - o Socialization
 - Healthcare
 - Detection of medical risk/neglect
 - Nutrition
- Impact on the well-being of families (Kalb et al., In Press) and Children (Vasa et al., 2020)

COVID-related Challenges in IDD

- Wearing a face mask
- Social distancing
- Hand hygiene
- Difficulty reporting symptoms
- Potential for multiple exposures (aides, therapists, bus drivers)

KennedyKrieger.org

In Press

 Sherby, M., et al. for the COMPASS-T Study Group. SARS-CoV-2 Screening Testing in Schools for Children with Intellectual and Developmental Disabilities. *Journal of Neurodevelopmental Disorders.*

Specific Aims

- To evaluate the impact of implementation strategies on the uptake of weekly SARS-CoV-2 testing in students with IDD and school staff through a blocked, randomized adaptive clinical trial.
- To assess perspectives among parents of students with disabilities who do not return to in-person instruction regarding the impact of COVID-19 and importance of SARS-CoV-2 testing and vaccine

PCR, Saliva-Based Testing

- No RNA extraction step (eliminates need for "reagents")
- Saliva-based diagnostic test (50ul)
- Uses Fluidigm Advanta DX SARS-CoV-2 assay
- Highly sensitive and specific
- Rapid 3 hour test results
- Scaling to 50K/week; cost \$26.07/test
- Development to EUA submission- 4wks

UNLOCKING POTENTIAL

Setting (N=500 students and staff)

Fairmount

Montgomery

LEAP

Picture of testing staff

KennedyKrieger.org

Study Goals and Timeline

April-June, 2021

July, 2021

October, 2021

January, 2022

- Management of IRB Reliance Across 3 sites (JHSOM, JHSPH, WU)
- Testing Preparation
- IRB Approval
- Begin conducting weekly asymptomatic COVID-19 testing
- Complete Fuzzy Cognitive Mapping; Launch Survey
- Randomize Schools To Customized Messaging Strategy

Outcomes

- Enrolled N=87 Staff, N=2 Students
- Completed N=347 Tests
- N=1 Positive Case

KennedyKrieger.org

Challenges

- Teacher survey examining COVID-19 preventive strategies
- June, 2021
- N=230 (63% MD/DC, 37% MO)
- Testing is not highly rated

What strategies do you feel are most helpful to reduce the spread of COVID-19 at school? Rank the following

Rating

Institute

ENTIAL

Challenges

- Central IRBs should be taken into start-up consideration
- KKI Schools have *just returned* to in-school instruction
- Heavy staff turn over makes this "one more thing"; lack of incentive
- History of scientific misconduct at KKI (lead abatement study) and JHU (Henrietta Lacks)
- Lack of utility due to vaccines (and KKI requirements) as well as low regional positivity rate
- Parental concerns about managing positives tests among students as well as testing logistics

Immediate Solutions

- Met with Missouri and Maryland Community Advisory Boards
- Rolling out an advertisement campaign in September to promote upcoming study incentive (\$5 per test; \$200-250 max)
- New Flyers, Phone and Email Scripts
- Reporting results in Bi-Weekly Newsletter (parents/staff)
- Present at Back-to-School Night and Staff Professional Development Days
- Increase Age of Student Enrollment (from 17 to 22)

Example of Study outreach

THE INSTITUTE IS TAKING PART IN A STUDY THAT EXAMINES HOW WELL FREQUENT CORONAVIRUS TESTING WORKS AT PREVENTING COVID-19 OUTBREAKS AND ALLOWING IN-PERSON LEARNING TO CONTINUE.

Last spring, as communities implemented restrictions to limit the spread of the coronavirus, schools across the country shifted from in-person to virtual learning. It was a stressful change for many students, particularly those with intellectual and developmental disabilities, many of whom require handson instruction, speech and occupational therapies, and other specialized services throughout the school day.

For them, a full return to the physical classroom—five days a

RESEARCH FRONTIERS

"We're excited to add weekly testing to our COVID-19 safety toolkit so students with disabilities are able to more safely and fully return to in-person instruction," says Dr. Linda Myers, the Institute's vice president of school programs and one of the study's co-principal investigators. "We are hopeful that the results of this study will be helpful for school communities

across the country, as we continue to navigate the pandemic."

"Routine testing is important, since many children with intellectual and developmental disabilities have difficulty with preventive measures, such as mask-wearing, hand hygiene, and social distancing," explains Dr. Luther Kalb, director of the Informatics Program at the Institute's Center for Autism and Related Disorders, and another co-principle investigator of the study. "This puts them at increased risk for contracting the coronavirus. Many of these children also have underlying medical conditions that put them at a higher risk for having poor outcomes if they develop COVID-19."

To understand the best ways to prepare a child with intellectual or developmental disabilities for weekly testing, Kennedy Krieger conducted focus groups with parents of students attending Kennedy Krieger schools. Among other things, the focus groups revealed that preparing a child to receive a coronavirus test in the very environment in which the test will take place is extremely helpful.

Konnader Krizzan Cahaal Dragname' four schools which contro

Long Term Solutions

• Tik-Tok Video

• Stickers

• Novel Messaging Campaign in January

Thank You

-> C i https://sites.wusti.edu/saferetum/

🚟 Washington University School of Medicine in St. Louis

Safe return to school for all

Kennedy Krieger Institute

Acknowledgements

The COMPASS-T Study Team

John N. Constantino, MD, Washington University School of Medicine, St. Louis, MO Bradley L. Schlaggar, MD, PhD, Kennedy Krieger Institute, Baltimore, MD Victor B. Brodskey, MD, Washington University School of Medicine, St. Louis, MO Julie A. Neidich, MD, Washington University School of Medicine, St. Louis, MO Albert M. Lai, PhD, Institute for Informatics, Washington University School of Medicine, St. Louis, MO Brett B. Maricque, PhD, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO Luther G. Kalb, PhD, Kennedy Krieger Institute, Baltimore, MD inda S. Myers, EdD, Kennedy Krieger Institute, Baltimore, MD George S. Gotto IV, PhD, Institute for Human Development, University of Missouri-Kansas City, Kansas City, M Stephanie A. Fritz, MD, MSCI, Washington University School of Medicine, St. Louis, MO Esther Lu, PhD, Washington University School of Medicine, St. Louis, MO Virginia R. McKay, PhD, Institute for Public Health, Brown School of Social Work, Washington University in St. Louis, St. Louis, MO Stephanie M. Morris, MD, Washington University School of Medicine, St. Louis, MO Byron J. Powell, PhD, Institute for Public Health, Brown School of Social Work, Washington University in St. Louis, St. Louis, MO Nancy B. Mueller, MPH, Brown School Evaluation Center, Washington University in St. Louis, St. Louis, MO James M. Dubois, e for Public H ealth, Brown School of Social Work, Washington University in St. Louis, St. Louis, MO Joyce E. Balls-Be Charlene A Cab

COV-IDD: Testing for COVID-19 in children with intellectual and developmental disabilities

John Foxe, Martin Zand, Stephen Dewhurst University of Rochester Intellectual & Developmental Disabilities Research Center (UR-IDDRC) gregadown.com

URMC / Mary Cariola Center Partnership

Mary Cariola Center (**MCC**) serves moderate-to-severe IDD children (**N=425**) via a large professional support staff (**N=450**). 70% of MCC students live in poverty, and 33% are from under-represented minority backgrounds. 100% are on federal food assistance programs.

Transforming lives of people with disabilities

Five Major Goals:

1)Virological Testing: We will establish a nasal-swab FDA-approved testing regimen to monitor and identify disease outbreak in a school setting at ultra-high risk for COVID-19 transmission. We will rapidly identify infections and develop approaches for isolating and contact-tracing to stem virus spread.

2)Serological Testing: Serology will establish background immunity levels in students and staff, from infection or vaccination, following those who are antibody-positive longitudinally to quantify temporal decay of IgG and neutralizing antibody levels. We will determine whether protective immunity in children with IDD, a population with prevalent immunological dysfunction, wanes at accelerated rates compared to the population-at-large.

3)Modeling to Optimize Testing: We will use agent-based simulation models to guide testing strategies and interventions in this specialized population. Simulations will be conducted interactively and iteratively, to assist in planning and implementation of testing procedures.

4)Mobile Testing Unit: We will deploy a customized, disability-enabled, mobile testing unit to directly deliver rapid flexible testing wherever need arises.

5)Overcoming Testing & Vaccine Anxiety/Hesitancy: We will conduct focus groups to identify community concerns, myths and misconceptions about testing and vaccination, and create a multimodal educational campaign that addresses and mitigates these concerns.

The Mobile Testing Unit

We will staff, equip and deploy a customized, disability-enabled, mobile unit to bring testing directly to the MCC community for optimal testing flexibility. A new van has been procured and we are working with Marketing to design a wrap similar to the UR Vision Van.

Molecular Testing for SARS-CoV-w at the URMC Central Laboratories

UR Medicine Central Laboratory COVID-19 Testing Capacity and Modalities

Assay	Platform	Manufacturer	Capacity Tests/Day	Method	FDA Emergency Use Authorization
TaqPath COVID- 19 High- Throughput Combo Kit	Amplitude Solution	Thermo Fisher Scientific	3000-6000	RT-PCR	YES
cobas SARS-CoV-2	cobas 8800 System	Roche Molecular Systems	2000	RT-PCR	YES
Xpert Xpress SARS-CoV-2	GeneXpert Infinity	Cepheid	500	RT-PCR	YES

RADx-UP samples will be primarily tested on the Thermo Fisher Scientific Amplitude system:

- High-throughput with readily available testing reagents
- Three targets (N gene, ORF1ab gene, S gene) for higher specificity and lower risk for mutations affecting assay performance
- Automated, 3.5 hour run time

The UR Medicine Central Laboratory has tested over 750,000 respiratory specimens for SARS-CoV-2 since the beginning of the pandemic with an average TAT of 24 hours

Clinical serological testing will be performed on the Abbott Architect platform using the SARS-CoV-2 IgG assay

- •Intended for the qualitative detection of IgG against the SARS-CoV-2 nucleocapsid protein
 - High sensitivity (~97%) and specificity (~99%)
- •Assay: SARS-CoV-2 IgG assay
- •Platform: ARCHITECT System
- •Manufacturer: Abbott Laboratories Inc
- •Capacity: High-throughput (500-800 per day)
- •Method: Chemiluminescent microparticle immunoassay (CMIA)
- •FDA Emergency Use Authorization

Scientific Questions

How does IgG antibody reactivity against SARS-CoV-2 change over time in teachers, staff, and IDD students?

What are the platforms of IgG cross-reactivity to circulating coronavirus strains?

What are the rates of asymptomatic transmission in vaccinated staff and IDD students?

Scientific Questions and General Deliverables

Questions:

- 1. What testing patterns and frequency are needed to:
 - Detect asymptomatic SARS-CoV-2
 - Minimize risk of transmission of SARS-CoV-2
 - Monitor classroom immunity
- 2. What changes in contact, immunity, and classroom structure maximize student and staff attendance?
 - Class size
 - Contact patterns
 - Community prevalence of viral variants

Deliverables – Flexible models that could be adapted to different school staff and student configurations allowing "what if?" scenario modelling

Major Outcomes to Date

- IRB approved 3/31/21
- Enrollment began 5/11/21
- Testing began 5/21/21
- Currently 147 participants enrolled 124 Mary Cariola staff & 23 Mary Cariola students
- 592 RT-PCR tests processed- 509 negative SARS-CoV-2 & 83 awaiting results
- 211 Finger-sticks collected on 116 unique participants (89% staff and 11% students)
- 108 Serological test results

Lessons Learned Regarding School Testing

We have experienced some issues in obtaining nasal swab specimens for PCR testing.

The issue arises mainly in the older students who are mostly able to walk, and move on their own. Distracting them to successfully collect nasal swabs has been challenging. Negative experiences from prior nasal swab specimen collection may also be a factor.

We have had better success at obtaining nasal swabs from Mary Cariola students who are younger and more "medically fragile". They do not have the ability to stand up, push us away, dodge the nasal swab, etc.

Due to this discovery, the project team is considering the collection of saliva as an alternative to the nasal swab when that specimen is unobtainable. The Mary Cariola team has concurred that saliva collection for PCR testing could be more successful, since the kids often need help brushing their teeth and sometimes simply eating and drinking.

Postulates for Variable Recruitment

We've implemented a number of different approaches to engage with Mary Cariola's parents and staff. Key lessons learned to date from the initiatives:

- Postcards sent in backpacks raise awareness but, with few exceptions, does not lead to action (i.e. calling about the study).
- Given the multiple competing priorities of their lives, many parents are not in a position to add one more task to their day (i.e. calling about study enrollment).
- The term research or study is a turn off to some parents so using that terminology early in the discussion may lead to a premature end to the conversation.
- Linking study outreach with existing events or activities is viable to both raise awareness and identify those interested in or potentially interested in enrolling. Individual outreach or conversations are important for many parents. For staff, engaging them through events (i.e. staff appreciation day) is a successful approach.
- Offering seasonal treats and T-shirts have a significant impact (i.e. ice cream trucks/ shaved ice trucks)

Representation for Recruitment for Mary Cariola Staff

Representation for Recruitment for Mary Cariola Students

No Known Issues to Date

Developing Situation- Dr. Michael Mendoza from the Monroe County Health Department has informed the Mary Cariola team that it's unlikely that there will be a COVID vaccine for children under 12 before the Fall. Given the Delta Variant, there's a push for vaccination and mandated COVID testing in schools, which aligns well with our study as it offers free testing for participating Mary Cariola staff and students.

Overcoming Testing & Vaccine Hesitancy; Measuring Impact

- **1.** Focus group interviews with priority populations
- 2. Targeted strategies to increase understanding of the COVID-19 vaccine
- **3. Effective communication tools/media** (social/digital, web, PR, testimonials)
- 4. On-the-ground education (speakers' bureau; "table talk")
- 5. Graphic medicine (innovative visual media and art

Overcoming Vaccine Hesitancy

NIH Roadmap for Medical Research initiative produced the **PROMIS**

- Efficient, precise, responsive and validated patient-reported outcome measure (PROM)
- Produce comparable domain-focused, PROM of health across patient subgroups and therapies
 - 11-year, \$100 million effort by NIH
 - Produces validated data quickly

- ▶ Item Response Theory
- Computer Adaptive Testing (CAT)

PROMIS based on the Biopsychosocial Model

Physical Health	Physical Function	Upper Extremity Mability Physical Function Fatigue Itch Pain		
	Physical Symptoms			
Mental Health	Ernotional Distress	Anxiety Depression		
	Psychological Function	Self-Efficacy		
Social	Social	Ability to Participate in Social Roles and Activities		
Health	Function			
	Social Relationships			

UR Voice: Data Collection

Key Innovations

- 1. Highly Significant Population kids with IDD
- Longitudinal Serology assess durability of immunity in kids with IDD
- 3. Mobile Testing Unit to reach kids at home
- 4. Agent-Based Modelling to derive high efficiency adaptive testing regimen.
- 5. Use of PROMIS to measure impact rapidly (and scalably); *opportunities for machine learning*

Return to School Workshop

Safe Return to School

Assessing Testing Strategies in Middle & High Schools

August 9,2021

Washington University in St.Louis

Project Goals

- Determine the best COVID-19 testing strategy to limit COVID-19 transmission in middle and high schools
 - Provide easy access to free saliva-based testing to all of the school community (staff, students, household members)
 - Staff and students in some middle and high schools will be offered weekly testing
- Partner with our community in listening sessions to better understand COVID-19 testing, vaccinations and in-person school

How does this research study work?

Testing Results

389 tests amongst 289 people

39 positive tests

Both screening and community drive up testing available

Cumulative Testing Numbers (Drive up + Surveillance)

	Hispanic/Latino		Not Hispanic/Latino			Unknown/Not Reported	
	Female	Male	Non-Binary	Female	Male	Female	Male
Black or African American	0	1	1	115	75	1	2
White	1	2	0	38	24	0	0

Age Group Breakdown

Overall Tests

People Tested

Positivity Rate Including Weekly Screening

Positive Test Breakdown

Of 28 positive tests eligible for vaccination, 4 were known to be fully vaccinated.

Age

Under Five
Five - Eleven
Twelve - Seventeen
Eighteen +

Community Advisory Board

CAB Composition

- School district representatives
- Community partners
- Parents
- Students
- Meets monthly
- Stipends provided
- Working to expand participation among students and parents

What COVID-19 testing strategy is best for our schools?

YOUR INPUT NEEDED

Discussions for ______ of students in the ______ School District

· Session times and dates available in summer-

- Receive # \$20 eight card for participation.
- To sign up for a session, follow the link below

http://bit.ly/safereturn2school

Key Themes

- Lead with caring
- Go beyond testing and engage community
- Improved equity and systems change should be a priority
- Clarity, transparency, and simplicity is key in all aspects of communication
 - Clarify what is meant by "safe"
- Visuals help
- Engaging students requires a unique approach

#Washington University School of Medicine in St. Louis

Questions? Contact the Evaluation Center at SR2SchoolawustLedu or call 314-935-2743.

Qualitative Data Collection

- Administrator Interviews
 - Superintendents interviews complete (n=5/5)
 - School Principals recruiting and conducting interviews now (n=3/16)
- Listening Sessions
 - Parents/caregivers
 - Staff/Teachers
 - Students (n=3)
- Recruiting now

Lessons Learned

- Relationships and trust are essential
- Continuous improvement and feedback to improve the process
- Ask and learn from the community
- Engaging CAB and Community Partners in recruitment is essential
- Participating in Back to School events and Professional Learning Meetings increases engagement

Recruitment Challenges

- Summer schedules can be obstacles
- Difficulty in reaching students to become interested in testing
 - Recruitment video being developed
 - T shirts supporting the project
- Lack of trust in testing
- Continued testing awareness for the drive-up testing
 - Social media being utilized in the districts
 - New website being developed

Next Steps

- School district meetings
- Back to school events
- Conduct listening sessions
- Expand Community Advisory Board
 - More Students and Parents
- Coordinate with community partners to support participants
- Promote vaccination

Ordinary people with extraordinary vision can redeem the soul of America by getting in what I call good trouble.

John Lewis July 17, 2020 NY Times

Thank You